AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect

Rongguo Song1,2,§Yunfa Si3,§Wei Qian2Haoran Zu2Bilei Zhou1Qinglei Du1Daping He2( )Yongliang Wang1( )
Air Force Early Warning Academy, Wuhan 430019, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
Hainan Research Institute, Wuhan University of Technology, Sanya 572000, China

§ Rongguo Song and Yunfa Si contributed equally to this work.

Show Author Information

Graphical Abstract

Conductor thickness exceeding the skin depth is a key point to achieve optimal electronic performances.

Abstract

Various new conductive materials with exceptional properties are utilized for the preparation of electronic devices. Achieving ultra-high conductivity is crucial to attain excellent electrical performance. However, there is a lack of systematic research on the impact of conductor material thickness on device performance. Here, we investigate the effect of conductor thickness on power transmission and radiation in radio-frequency (RF) and microwave electronics based on MXene nanosheets material transmission lines and antennas. The MXene transmission line with thickness above the skin depth exhibits a good transmission coefficient of approximately −3 dB, and the realized gain of MXene antennas exceeds 2 dBi. Additionally, the signal transmission strength of MXene antenna with thickness above the skin depth is higher than 5-μm MXene antenna approximately 5.5 dB. Transmission lines and antennas made from MXene materials with thickness above the skin depth exhibit stable and reliable performance, which has significant implications for obtaining high-performance RF and microwave electronics based on new conductive materials.

Electronic Supplementary Material

Download File(s)
12274_2023_6127_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Zhao, W. W.; Ni, H.; Ding, C. B.; Liu, L. L.; Fu, Q. F.; Lin, F. F.; Tian, F.; Yang, P.; Liu, S. J.; He, W. J. et al. 2D titanium carbide printed flexible ultrawideband monopole antenna for wireless communications. Nat. Commun. 2023, 14, 278.

[2]

Hussain, R. Shared-aperture slot-based sub-6-GHz and mm-wave IoT antenna for 5G applications. IEEE Internet Things J. 2021, 8, 10807–10814.

[3]

Zhang, L.; Zhang, J. X.; He, Y. J.; Mao, C. X.; Li, W. T.; Wong, S. W.; Mei, P.; Gao, S. A single-layer 10–30 GHz reflectarray antenna for the internet of vehicles. IEEE Trans. Veh. Technol. 2022, 71, 1480–1490.

[4]

Dorrah, A. H.; Eleftheriades, G. V. Experimental demonstration of peripherally-excited antenna arrays. Nat. Commun. 2021, 12, 6109.

[5]

Tian, X.; Lee, P. M.; Tan, Y. J.; Wu, T. L. Y.; Yao, H. C.; Zhang, M. Y.; Li, Z. P.; Ng, K. A.; Tee, B. C. K.; Ho, J. S. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2019, 2, 243–251.

[6]

Ibrahim, A. A.; Mohamed, H. A.; Abdelghany, M. A.; Tammam, E. Flexible and frequency reconfigurable CPW-fed monopole antenna with frequency selective surface for IoT applications. Sci. Rep. 2023, 13, 8409.

[7]

Hu, P. F.; Leung, K. W.; Luk, K. M.; Pan, Y. M.; Zheng, S. Y. Diversity glass antennas for Tri-band WiFi applications. Engineering 2023, 23, 157–169.

[8]

Pei, R.; Leach, M. P.; Lim, E. G.; Wang, Z.; Song, C. Y.; Wang, J. C.; Zhang, W. Z.; Jiang, Z. Z.; Huang, Y. Wearable EBG-backed belt antenna for smart on-body applications. IEEE Trans. Industr. Inform. 2020, 16, 7177–7189.

[9]

Baumbauer, C. L.; Anderson, M. G.; Ting, J.; Sreekumar, A.; Rabaey, J. M.; Arias, A. C.; Thielens, A. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020, 10, 16543.

[10]

Lim, E. G.; Wang, J. C.; Juans, G.; Wang, Z.; Leach, M. P.; Lee, S.; Theera-Umpon, N. Design of wearable radio frequency identification antenna. Wireless Pers. Commun. 2018, 98, 3059–3070.

[11]

I, C. L.; Han, S. F.; Bian, S. Energy-efficient 5G for a greener future. Nat. Electron. 2020, 3, 182–184.

[12]

Asci, C.; Sadeqi, A.; Wang, W.; Rezaei Nejad, H.; Sonkusale, S. Design and implementation of magnetically-tunable quad-band filter utilizing split-ring resonators at microwave frequencies. Sci. Rep. 2020, 10, 1050.

[13]

Kaim, V.; Kanaujia, B. K.; Kumar, S.; Choi, H. C.; Kim, K. W.; Rambabu, K. Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications. Sci. Rep. 2020, 10, 6795.

[14]

Ferrari, A. C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

[15]

Guna, V. K.; Murugesan, G.; Basavarajaiah, B. H.; Ilangovan, M.; Olivera, S.; Krishna, V.; Reddy, N. Plant-based completely biodegradable printed circuit boards. IEEE Trans. Electron Devices 2016, 63, 4893–4898.

[16]

Awasthi, A. K.; Li, J. H.; Koh, L.; Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2019, 2, 86–89.

[17]

Song, R. G.; Jiang, S. Q.; Hu, Z. L.; Fan, C.; Li, P.; Ge, Q.; Mao, B. Y.; He, D. P. Ultra-high conductive graphene assembled film for millimeter wave electromagnetic protection. Sci. Bull. 2022, 67, 1122–1125.

[18]

Song, R. G.; Wang, Z.; Zu, H. R.; Chen, Q.; Mao, B. Y.; Wu, Z. P.; He, D. P. Wideband and low sidelobe graphene antenna array for 5G applications. Sci. Bull. 2021, 66, 103–106.

[19]

Shao, Y. Z.; Wei, L. S.; Wu, X. Y.; Jiang, C. M.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J. T.; Ying, Y. B.; Zhang, C. J. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 13, 3223.

[20]

Puchades, I.; Rossi, J. E.; Cress, C. D.; Naglich, E.; Landi, B. J. Carbon nanotube thin-film antennas. ACS Appl. Mater. Interfaces 2016, 8, 20986–20992.

[21]

Amram Bengio, E.; Senic, D.; Taylor, L. W.; Headrick, R. J.; King, M.; Chen, P. Y.; Little, C. A.; Ladbury, J.; Long, C. J.; Holloway, C. L. et al. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 2019, 114, 203102.

[22]

Guan, H. J.; Song, R. G.; Tong, C.; Zhao, X.; Yang, Y. P.; He, D. P. Graphene assembled film based conformal sensor array for submillimeter crack location and direction detection. Appl. Phys. Express 2023, 16, 015512.

[23]
Zhang, J. W.; Wang, Y. C.; Song, R. G.; Kou, Z. K.; He, D. P. Highly flexible graphene-film-based rectenna for wireless energy harvesting. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12548.
[24]

Zu, H. R.; Wu, B.; Zhang, Y. H.; Zhao, Y. T.; Song, R. G.; He, D. P. Circularly polarized wearable antenna with low profile and low specific absorption rate using highly conductive graphene film. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2354–2358.

[25]

Li, Y.; Tian, X.; Gao, S. P.; Jing, L.; Li, K. R.; Yang, H. T.; Fu, F. F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S. et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.

[26]

Han, M. K.; Liu, Y. Q.; Rakhmanov, R.; Israel, C.; Tajin, M. A. S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K. R.; Gogotsi, Y. Solution-processed Ti3C2T x MXene antennas for radio-frequency communication. Adv. Mater. 2021, 33, e2003225.

[27]

Song, R. G.; Wang, Q. L.; Mao, B. Y.; Wang, Z.; Tang, D. L.; Zhang, B.; Zhang, J. W.; Liu, C. G.; He, D. P.; Wu, Z. et al. Flexible graphite films with high conductivity for radio-frequency antennas. Carbon 2018, 130, 164–169.

[28]

Pan, K. W.; Fan, Y. Y.; Leng, T.; Li, J. S.; Xin, Z. Y.; Zhang, J. W.; Hao, L.; Gallop, J.; Novoselov, K. S.; Hu, Z. R. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 2018, 9, 5197.

[29]

Hui, Y. Y.; Zu, H. R.; Song, R. G.; Fu, H. Q.; Luo, K. L.; Tian, C.; Wu, B.; Huang, G. L.; Kou, Z. K.; Cheng, X. et al. Graphene-assembled film-based reconfigurable filtering antenna with enhanced corrosion-resistance. Crystals 2023, 13, 747.

[30]

Jiang, S. Q.; Song, R. G.; Hu, Z. L.; Xin, Y. T.; Huang, G. L.; He, D. P. Millimeter wave phased array antenna based on highly conductive graphene-assembled film for 5G applications. Carbon 2022, 196, 493–498.

[31]

Song, R. G.; Mao, B. Y.; Wang, Z.; Hui, Y. Y.; Zhang, N.; Fang, R.; Zhang, J. W.; Wu, Y. E.; Ge, Q.; Novoselov, K. S. et al. Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. USA 2023, 120, e2209807120.

[32]

Szeftel, J.; Sandeau, N.; Khater, A. Study of the skin effect in superconducting materials. Phys. Lett. A 2017, 381, 1525–1528.

[33]

Zhao, M. Q.; Trainor, N.; Ren, C. E.; Torelli, M.; Anasori, B.; Gogotsi, Y. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 2019, 4, 1800639.

[34]

Song, R. G.; Zhao, X.; Wang, Z.; Fu, H. Q.; Han, K. K.; Qian, W.; Wang, S. Y.; Shen, J.; Mao, B. Y.; He, D. P. Sandwiched graphene clad laminate: A binder-free flexible printed circuit board for 5G antenna application. Adv. Eng. Mater. 2020, 22, 2000451.

[35]

Si, Y. F.; Jin, H. H.; Zhang, Q.; Xu, D. W.; Xu, R. X.; Ding, A. X.; Liu, D. Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding. Ceram. Int. 2022, 48, 24898–24905.

[36]

Wang, H.; Cui, Z.; He, S. A.; Zhu, J. Q.; Luo, W.; Liu, Q.; Zou, R. J. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 189.

[37]

Hao, S. W.; Fu, Q. J.; Meng, L.; Xu, F.; Yang, J. A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nat. Commun. 2022, 13, 6472.

Nano Research
Pages 3061-3067
Cite this article:
Song R, Si Y, Qian W, et al. Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect. Nano Research, 2024, 17(4): 3061-3067. https://doi.org/10.1007/s12274-023-6127-7
Topics:

459

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 03 August 2023
Revised: 24 August 2023
Accepted: 25 August 2023
Published: 19 September 2023
© Tsinghua University Press 2023
Return