Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications, where images are processed within the photodiode arrays. It demands the composed photodiodes are reconfigurable, which are usually achieved by ambipolar two-dimensional (2D) semiconductors. To improve the ambipolar charges injection, here we report a top-gated field-effect transistor (FET) design that is of bottom van der Waals contact via transferring ambipolar 2D WSe2 onto Pd/Cr source/drain electrodes. The devices exhibit nearly negligible effective barrier heights for both holes and electrons based on thermionic emission mode, and show an almost balanced on/off ratio in the p-branch and n-branch. By replacing the top gate with two aligned semi-gates, the devices can effectively function as reconfigurable photodiodes. They can be switched between PIN and NIP configurations via controlling the two semi-gates, exhibiting good linearity in terms of short-circuit current (ISC) and incident light power density. The photodiode arrays are also demonstrated for in-sensor optoelectronic convolutional image processing, showing significant potential for in-sensor computing image processors.
Zhou, F. C.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671.
Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.
Zhang, Z. H.; Wang, S. Y.; Liu, C. S.; Xie, R. Z.; Hu, W. D.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 2022, 17, 27–32.
Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.
Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.
Jang, H.; Hinton, H.; Jung, W. B.; Lee, M. H.; Kim, C.; Park, M.; Lee, S. K.; Park, S.; Ham, D. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 2022, 5, 519–525.
Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.
Sun, X. X.; Zhu, C. G.; Yi, J. L.; Xiang, L.; Ma, C.; Liu, H. W.; Zheng, B. Y.; Liu, Y.; You, W. X.; Zhang, W. J. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 2022, 5, 752–760.
Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039–7047.
Zhang, G. Q.; Lu, G. T.; Li, X. Z.; Mei, Z.; Liang, L.; Fan, S. S.; Li, Q. Q.; Wei, Y. Reconfigurable two-dimensional air-gap barristors. ACS Nano 2023, 17, 4564–4573.
Zhao, Z. J.; Rakheja, S.; Zhu, W. J. Nonvolatile reconfigurable 2D Schottky barrier transistors. Nano Lett. 2021, 21, 9318–9324.
Sheng, Z.; Wang, Y.; Hu, W. N.; Sun, H. R.; Dong, J. G.; Yu, R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit. Nano Res. 2023, 16, 1252–1258.
Thakar, K.; Lodha, S. Multi-bit analog transmission enabled by electrostatically reconfigurable ambipolar and anti-ambipolar transport. ACS Nano 2021, 15, 19692–19701.
Huang, X. H.; Liu, C. S.; Tang, Z. W.; Zeng, S. F.; Wang, S. Y.; Zhou, P. An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 2023, 18, 486–492.
Wang, G. C.; Bao, L. H.; Ma, R. S.; Pei, T. F.; Zhang, Y. Y.; Wu, L. M.; Zhou, Z.; Yang, H. F.; Li, J. J.; Gu, C. Z. et al. From bidirectional rectifier to polarity-controllable transistor in black phosphorus by dual gate modulation. 2D Mater. 2017, 4, 025056.
Su, B. W.; Yao, B. W.; Zhang, X. L.; Huang, K. X.; Li, D. K.; Guo, H. W.; Li, X. K.; Chen, X. D.; Liu, Z. B.; Tian, J. G. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2020, 2, 1733–1740.
Li, D.; Wang, B.; Chen, M. Y.; Zhou, J.; Zhang, Z. X. Gate-controlled BP-WSe2 heterojunction diode for logic rectifiers and logic optoelectronics. Small 2017, 13, 1603726.
Hu, W. N.; Liu, Y. L.; Huang, Z. C.; Dong, J. G.; Wang, Y.; Chen, W. A.; Sheng, Z.; Sun, H. R.; Hu, G. X.; Cong, C. X. et al. Full two-dimensional ambipolar CFET-like architecture for switchable logic circuits. J. Phys. D:Appl. Phys. 2023, 56, 355106.
Liu, C. S.; Chen, H. W.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y. G.; Zeng, X. Y.; Zhang, D. W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662–667.
Wu, L. M.; Wang, A. W.; Shi, J. N.; Yan, J. H.; Zhou, Z.; Bian, C.; Ma, J. J.; Ma, R. S.; Liu, H. T.; Chen, J. C. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 2021, 16, 882–887.
Yang, X. D.; Li, J.; Song, R.; Zhao, B.; Tang, J. M.; Kong, L. G.; Huang, H.; Zhang, Z. W.; Liao, L.; Liu, Y. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 2023, 18, 471–478.
Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.
Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.
Zhang, X. K.; Kang, Z.; Gao, L.; Liu, B. S.; Yu, H. H.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Molecule-upgraded van der Waals contacts for Schottky-barrier-free electronics. Adv. Mater. 2021, 33, 2104935.
Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.
Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.
Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.
Wu, L. M.; Shi, J. N.; Zhou, Z.; Yan, J. H.; Wang, A. W.; Bian, C.; Ma, J. J.; Ma, R. S.; Liu, H. T.; Chen, J. C. et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 2020, 13, 1127–1132.
Dong, X. M.; Zhang, H. S.; Li, Y. X.; Liu, B.; Pan, K. Y.; Nie, Y. J.; Yu, M. N.; Eginligil, M.; Liu, J. Q.; Huang, W. Two-dimensional molecular crystalline semiconductors towards advanced organic optoelectronics. Nano Res. 2022, 15, 9554–9572.
Dong, J. G.; Sheng, Z.; Yu, R.; Hu, W. N.; Wang, Y.; Sun, H. R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. WSe2 N-type negative capacitance field-effect transistor with indium low Schottky barrier contact. Adv. Electron. Mater. 2022, 8, 2100829.
del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 2014, 8, 9629–9635.
Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.
Fan, J. H.; Gao, P.; Zhang, A. M.; Zhu, B. R.; Zeng, H. L.; Cui, X. D.; He, R.; Zhang, Q. M. Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J. Appl. Phys. 2014, 115, 053527.
Zhang, K. L.; Feng, Y. L.; Wang, F.; Yang, Z. C.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022.
Phan, N. A. N.; Noh, H.; Kim, J.; Kim, Y.; Kim, H.; Whang, D.; Aoki, N.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts. Small 2022, 18, 2105753.
Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.
Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.
Lee, S.; Tang, A.; Aloni, S.; Wong, H. S. P. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett. 2016, 16, 276–281.
Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 19, 6352–6362.
Penumatcha, A. V.; Salazar, R. B.; Appenzeller, J. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Nat. Commun. 2015, 6, 8948.
Hu, W. N.; Wang, H.; Dong, J. G.; Sun, H. R.; Wang, Y.; Sheng, Z.; Zhang, Z. X. Chemical dopant-free controlled MoTe2/MoSe2 heterostructure toward a self-driven photodetector and complementary logic circuits. ACS Appl. Mater. Interfaces 2023, 15, 18182–18190.
Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.
Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Nonvolatile MoTe2 p-n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216–7222.
Pi, L. J.; Wang, P. F.; Liang, S. J.; Luo, P.; Wang, H. Y.; Li, D. Y.; Li, Z. X.; Chen, P.; Zhou, X.; Miao, F. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254.
Liu, Y.; Zhang, G.; Zhou, H. L.; Li, Z.; Cheng, R.; Xu, Y.; Gambin, V.; Huang, Y.; Duan, X. F. Ambipolar barristors for reconfigurable logic circuits. Nano Lett. 2017, 17, 1448–1454.
Wu, P.; Reis, D.; Hu, X. S.; Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 2021, 4, 45–53.
Sheng, Z.; Dong, J. G.; Hu, W. N.; Wang, Y.; Sun, H. R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 2023, 23, 5242–5249.