AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Interfacial engineering of the layered oxide cathode materials for sodium-ion battery

Quanqing Zhao1,§( )Ruru Wang1,§Ming Gao2Faheem K. Butt3Jianfeng Jia1( )Haishun Wu1Youqi Zhu4( )
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
Department of Physics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China

§ Quanqing Zhao and Ruru Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The review discusses the mechanisms of bulk/surface degradation induced by oxygen loss, phase transition, crack, and electrolyte decomposition. The construction and stabilization mechanisms of interface via surface- and electrolyte-engineering are comprehensively evaluated.

Abstract

The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries (SIBs) due to their large theoretical capacity, favorable two-dimensional (2D) ion diffusion channel, and simple manipuility. However, their cycling stability, rate capability, and thermal stability are still significantly concerned and highlighted before further practical application. The chemical, mechanical and electrochemical stability of the cathode–electrolyte interfaces upon cycling is of great significance. Herein, the unique structural and electrochemical properties of the layered oxide cathode materials for SIB are reviewed. The mechanism of bulk/surface degradation induced by oxygen evolution, phase transition, microcrack, and electrolyte decomposition is thoroughly understood. Furthermore, the interfacial engineering to construct stable interface through various effective methods is fully discussed. The future outlook and challenges for interfacial engineering in this filed are also summarized. This review should shed light on the rational design and construct of robust interface for applications of superior layered oxide cathodes in SIB and may suggest future research directions.

Electronic Supplementary Material

Download File(s)
12274_2023_6133_MOESM1_ESM.pdf (521.8 KB)

References

[1]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[2]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[3]

Liu, H.; Zhang, X.; He, S. M.; He, D.; Shang, Y.; Yu, H. J. Molten salts for rechargeable batteries. Mater. Today 2022, 60, 128–157.

[4]

Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.

[5]

Fang, Y. J.; Xiao, L. F.; Chen, Z. X.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Recent advances in sodium-ion battery materials. Electrochem. Energy Rev. 2018, 1, 294–323.

[6]

Zhou, Q.; Li, Y. Q.; Tang, F.; Li, K. X.; Rong, X. H.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Thermal stability of high power 26650-type cylindrical Na-ion batteries. Chin. Phys. Lett. 2021, 38, 076501.

[7]

Deng, J. Q.; Luo, W. B.; Chou, S. L.; Liu, H. K.; Dou, S. X. Sodium-ion batteries: From academic research to practical commercialization. Adv. Energy Mater. 2018, 8, 1701428.

[8]

Yu, F.; Tang, W.; Wang, S. C.; Guo, M. C.; Deng, W. W.; Hu, J. H.; Jia, S.; Fan, C. Organic-carbon core–shell structure promotes cathode performance for Na-ion batteries. Adv. Funct. Mater. 2023, 33, 2300740.

[9]

Huang, Y.; Zhang, X.; Ji, L.; Wang, L.; Xu, B. B.; Shahzad, M. W.; Tang, Y. X.; Zhu, Y. F.; Yan, M.; Sun, G. X. et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 2023, 58, 1–8.

[10]

Jia, Y. H.; Wu, Y.; Li, L. S.; Song, L. M.; Gao, J. H. Monoclinic Na2VOP2O7: A 4 V-class cost-effective cathode for sodium-ion batteries. Mater. Today Phys. 2023, 33, 101038.

[11]

Sun, S. Q.; Liu, S. B.; Chen, Y. J.; Li, L.; Bai, Q.; Tian, Z.; Huang, Q.; Wang, Y. Z.; Wang, X. M.; Guo, L. Quantum physics and deep learning to reveal multiple dimensional modified regulation by ternary substitution of iron, manganese, and cobalt on Na3V2(PO4)3 for superior sodium storage. Adv. Funct. Mater. 2023, 33, 2213711.

[12]

Yan, S. X.; Luo, S. H.; Yang, L.; Feng, J.; Li, P. W.; Wang, Q.; Zhang, Y. H.; Liu, X. Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. J. Adv. Ceram. 2021, 11, 158–171.

[13]

Liu, N. B.; Zhao, X. Y.; Qin, B.; Zhao, D. D.; Dong, H. H.; Qiu, M. D.; Wang, L. B. A high-performance Na-storage cathode enabled by layered P2-type KxMnO2 with enlarged interlayer spacing and fast diffusion channels for sodium-ion batteries. J. Mater. Chem. A 2022, 10, 25168–25177.

[14]

Wang, X.; Li, H. X.; Zhang, W.; Ge, X. C.; He, L.; Zhang, L. Y.; Li, S. H.; Wen, N. F.; Guo, J. L.; Lai, Y. Q. et al. Unlocking fast and highly reversible sodium storage in Fe-based mixed polyanion cathodes for low-cost and high-performance sodium-ion batteries. J. Mater. Chem. A 2023, 11, 6978–6985.

[15]

Zhao, A. L.; Ji, F. J.; Liu, C. Y.; Zhang, S. H.; Chen, K. A.; Chen, W. H.; Feng, X. M.; Zhong, F. P.; Ai, X. P.; Yang, H. X. et al. Revealing the structural chemistry in Na6−2xFex(SO4)3 (1.5 ≤ x ≤ 2.0) for low-cost and high-performance sodium-ion batteries. Sci. Bull. 2023, 68, 1894–1903.

[16]

Gu, Z. Y.; Heng, Y. L.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Sun, Z. H.; Zheng, S. H.; Liang, H. J.; Li, B. et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Res. 2023, 16, 439–448.

[17]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[18]

Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 2007, 99, 81–85.

[19]

Chen, C.; Huang, W. Y.; Li, Y. W.; Zhang, M. J.; Nie, K. Q.; Wang, J. O.; Zhao, W. G.; Qi, R.; Zuo, C. J.; Li, Z. B. et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 2021, 90, 106504.

[20]

Cheng, Z. W.; Fan, X. Y.; Yu, L. Z.; Hua, W. B.; Guo, Y. J.; Feng, Y. H.; Ji, F. D.; Liu, M. T.; Yin, Y. X.; Han, X. G. et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117728.

[21]

Yuan, T.; Li, S. Q.; Sun, Y. Y.; Wang, J. H.; Chen, A. J.; Zheng, Q. F.; Zhang, Y. X.; Chen, L. W.; Nam, G.; Che, H. Y. et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano 2022, 16, 18058–18070.

[22]

Zhao, Q. Q.; Butt, F. K.; Yang, M.; Guo, Z. F.; Yao, X. Y.; Zapata, M. J. M.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Mater. 2021, 41, 581–587.

[23]

Mao, Q. J.; Gao, R.; Li, Q. Y.; Ning, D.; Zhou, D.; Schuck, G.; Schumacher, G.; Hao, Y. M.; Liu, X. F. O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {010} facets as high performance cathode materials for sodium-ion batteries. Chem. Eng. J. 2020, 382, 122978.

[24]

Yu, L. Z.; Dong, H. J.; Chang, Y. X.; Cheng, Z. W.; Xu, K.; Feng, Y. H.; Si, D.; Zhu, X.; Liu, M. T.; Xiao, B. et al. Elucidation of the sodium kinetics in layered P-type oxide cathodes. Sci. China Chem. 2022, 65, 2005–2014.

[25]

Kulka, A.; Marino, C.; Walczak, K.; Borca, C.; Bolli, C.; Novák, P.; Villevieille, C. Influence of Na/Mn arrangements and P2/P’2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 6022–6033.

[26]

Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288–5296.

[27]

Sathiya, M.; Jacquet, Q.; Doublet, M. L.; Karakulina, O. M.; Hadermann, J.; Tarascon, J. M. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv. Energy Mater. 2018, 8, 1702599.

[28]

Ling, Y. X.; Zhou, J.; Guo, S.; Fu, H. W.; Zhou, Y. F.; Fang, G. Z.; Wang, L. B.; Lu, B. A.; Cao, X. X.; Liang, S. Q. Copper-stabilized P’2-type layered manganese oxide cathodes for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 58665–58673.

[29]

Kim, E. J.; Ma, L. A.; Duda, L. C.; Pickup, D. M.; Chadwick, A. V.; Younesi, R.; Irvine, J. T. S.; Armstrong, A. R. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide. ACS Appl. Energy Mater. 2020, 3, 184–191.

[30]

Nguyen, N. A.; Kim, K.; Choi, K. H.; Jeon, H.; Lee, K.; Ryou, M. H.; Lee, Y. M. Effect of calcination temperature on a P-type Na0.6Mn0.65Ni0.25Co0.10O2 cathode material for sodium-ion batteries. J. Electrochem. Soc. 2017, 164, A6308–A6314.

[31]

Deng, C. J.; Gabriel, E.; Skinner, P.; Lee, S.; Barnes, P.; Ma, C. R.; Gim, J.; Lau, M. L.; Lee, E.; Xiong, H. Origins of irreversibility in layered NaNixFeyMnzO2 cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 51397–51408.

[32]

Hwang, J. Y.; Myung, S. T.; Yoon, C. S.; Kim, S. S.; Aurbach, D.; Sun, Y. K. Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na[Ni0.61Co0.12Mn0.27]O2 assembled in spherical secondary particles. Adv. Funct. Mater. 2016, 26, 8083–8093.

[33]

Peng, B.; Chen, Y. X.; Zhao, L. P.; Zeng, S. Y.; Wan, G. L.; Wang, F.; Zhang, X. L.; Wang, W. T.; Zhang, G. Q. Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Mater. 2023, 56, 631–641.

[34]

Zhou, P. F.; Che, Z. N.; Liu, J.; Zhou, J. K.; Wu, X. Z.; Weng, J. Y.; Zhao, J. P.; Cao, H.; Zhou, J.; Cheng, F. Y. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023, 57, 618–627.

[35]

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

[36]

Huang, Y. Y.; Yan, Z. C.; Luo, W.; Hu, Z. W.; Liu, G. X.; Zhang, L. L.; Yang, X. L.; Ou, M. Y.; Liu, W. J.; Huang, L. Q. et al. Vitalization of P2-Na2/3Ni1/3Mn2/3O2 at high-voltage cyclability via combined structural modulation for sodium-ion batteries. Energy Storage Mater. 2020, 29, 182–189.

[37]

Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2014, 23, 118202.

[38]

Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928–6933.

[39]

Li, Y. M.; Yang, Z. Z.; Xu, S. Y.; Mu, L. Q.; Gu, L.; Hu, Y. S.; Li, H.; Chen, L. Q. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500031.

[40]

Xu, G. L.; Liu, X.; Zhou, X. W.; Zhao, C.; Hwang, I.; Daali, A.; Yang, Z. Z.; Ren, Y.; Sun, C. J.; Chen, Z. H. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 2022, 13, 436.

[41]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[42]

Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.

[43]

Rouxel, J. Anion-cation redox competition and the formation of new compounds in highly covalent systems. Chem.—Eur. J. 1996, 2, 1053–1059.

[44]

Robertson, A. D.; Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 2003, 15, 1984–1992.

[45]

Yu, D. Y. W.; Yanagida, K.; Kato, Y.; Nakamura, H. Electrochemical activities in Li2MnO3. J. Electrochem. Soc. 2009, 156, A417–A424.

[46]

Kalyani, P.; Chitra, S.; Mohan, T.; Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 1999, 80, 103–106.

[47]

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

[48]

Kitchaev, D. A.; Vinckeviciute, J.; Van der Ven, A. Delocalized metal-oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 2021, 143, 1908–1916.

[49]

Kang, S.; Choi, D.; Lee, H.; Choi, B.; Kang, Y. M. A mechanistic insight into the oxygen redox of Li-rich layered cathodes and their related electronic/atomic behaviors upon cycling. Adv. Mater. 2023, 2211965.

[50]

Xie, Y.; Saubanère, M.; Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 2017, 10, 266–274.

[51]

Ren, H. X.; Li, Y.; Ni, Q.; Bai, Y.; Zhao, H. C.; Wu, C. Unraveling anionic redox for sodium layered oxide cathodes: Breakthroughs and perspectives. Adv. Mater. 2022, 34, 2106171.

[52]

Ma, C. Z.; Alvarado, J.; Xu, J.; Clément, R. J.; Kodur, M.; Tong, W.; Grey, C. P.; Meng, Y. S. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 4835–4845.

[53]

Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.

[54]

de Boisse, B. M.; Nishimura, S. I.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7O2 (□: Mn vacancy). Adv. Energy Mater. 2018, 8, 1800409.

[55]

Jia, M.; Li, H. F.; Qiao, Y.; Wang, L. L.; Cao, X.; Cabana, J.; Zhou, H. S. Elucidating anionic redox chemistry in P3 layered cathode for Na-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 38249–38255.

[56]

Lai, Y. Y.; Xie, H. X.; Li, P.; Li, B.; Zhao, A. L.; Luo, L. B.; Jiang, Z. W.; Fang, Y. J.; Chen, S. L.; Ai, X. P. et al. Ion-migration mechanism: An overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 2022, 34, 2206039.

[57]

Li, X. L.; Bao, J.; Shadike, Z.; Wang, Q. C.; Yang, X. Q.; Zhou, Y. N.; Sun, D. L.; Fang, F. Stabilizing transition metal vacancy induced oxygen redox by Co2+/Co3+ redox and sodium-site doping for layered cathode materials. Angew. Chem., Int. Ed. 2021, 60, 22026–22034.

[58]

Dai, K. H.; Wu, J. P.; Zhuo, Z. Q.; Li, Q. H.; Sallis, S.; Mao, J.; Ai, G.; Sun, C. H.; Li, Z. Y.; Gent, W. E. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 2019, 3, 518–541.

[59]

Kim, E. J.; Maughan, P. A.; Bassey, E. N.; Clément, R. J.; Ma, L. A.; Duda, L. C.; Sehrawat, D.; Younesi, R.; Sharma, N.; Grey, C. P. et al. Importance of superstructure in stabilizing oxygen redox in P3-Na0.67Li0.2Mn0.8O2. Adv. Energy Mater. 2022, 12, 2102325.

[60]

Zhao, C.; Chen, C.; Hu, B.; Tong, W.; Liu, H.; Hu, B. W.; Li, C. Correlating Mg displacement with topologically regulated lattice oxygen redox in Na-ion layered oxide cathodes. Chem. Mater. 2022, 34, 9240–9250.

[61]

House, R. A.; Maitra, U.; Pérez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

[62]

Zheng, W.; Liu, Q.; Wang, Z. Y.; Wu, Z. L.; Gu, S.; Cao, L. J.; Zhang, K. L.; Fransaer, J.; Lu, Z. G. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Mater. 2020, 28, 300–306.

[63]

Risthaus, T.; Zhou, D.; Cao, X.; He, X.; Qiu, B.; Wang, J.; Zhang, L.; Liu, Z. P.; Paillard, E.; Schumacher, G. et al. A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. J. Power Sources 2018, 395, 16–24.

[64]

Cao, M. H.; Li, R. Y.; Lin, S. Y.; Zheng, S. D.; Ma, L.; Tan, S.; Hu, E. Y.; Shadike, Z.; Yang, X. Q.; Fu, Z. W. Oxygen redox chemistry in P2-Na0.6Li0.11Fe0.27Mn0.62O2 cathode for high-energy Na-ion batteries. J. Mater. Chem. A 2021, 9, 27651–27659.

[65]

Zuo, W. H.; Ren, F. C.; Li, Q. H.; Wu, X. H.; Fang, F.; Yu, X. Q.; Li, H.; Yang, Y. Insights of the anionic redox in P2-Na0.67Ni0.33Mn0.67O2. Nano Energy 2020, 78, 105285.

[66]

Huang, Y. Y.; Zhu, Y. C.; Nie, A. M.; Fu, H. Y.; Hu, Z. W.; Sun, X. P.; Haw, S. C.; Chen, J. M.; Chan, T. S.; Yu, S. J. et al. Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg substitution. Adv. Mater. 2022, 34, 2105404.

[67]

Cheng, C.; Chen, C.; Chu, S. Y.; Hu, H. L.; Yan, T. R.; Xia, X.; Feng, X. F.; Guo, J. H.; Sun, D.; Wu, J. P. et al. Enhancing the reversibility of lattice oxygen redox through modulated transition metal-oxygen covalency for layered battery electrodes. Adv. Mater. 2022, 34, 2201152.

[68]

Rong, X. H.; Liu, J.; Hu, E. Y.; Liu, Y. J.; Wang, Y.; Wu, J. P.; Yu, X. Q.; Page, K.; Hu, Y. S.; Yang, W. L. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2018, 2, 125–140.

[69]

Xue, Z. C.; Huang, J. N.; Guo, X. Y.; Guo, H.; Zhu, Y.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Du, K. Capturing surface interlayer cation migration in Na0.6[Li0.2Mn0.8]O2 layered cathode materials for sodium battery. Ceram. Int. 2022, 48, 25642–25646.

[70]

Liu, Y. H.; Fang, X.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Enaya, H. A.; Zhou, C. W. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27–34.

[71]

Xia, J. Y.; Wu, W. W.; Fang, K. X.; Wu, X. H. Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon 2020, 157, 693–702.

[72]

Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J. M. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chem. Mater. 2017, 29, 5948–5956.

[73]

Liu, J.; Didier, C.; Sale, M.; Sharma, N.; Guo, Z. P.; Peterson, V. K.; Ling, C. D. Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3-Na0.5Ni0.25Mn0.75O2. J. Mater. Chem. A 2020, 8, 21151–21162.

[74]

Liu, Z. B.; Liu, J. Structural evolution in P2-type layered oxide cathode materials for sodium-ion batteries. ChemNanoMat 2022, 8, e202100385.

[75]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[76]

Liu, H. Q.; Chen, H. Y.; Deng, W. T.; Zhang, S.; Mei, Y.; Huang, J. N.; Hu, X. Y.; Wang, K.; Jian, W. S.; Zou, G. Q. et al. Orthorhombic Na2/3Cu0.1Mn0.9O2 cathode: Enhanced Na storage performances with the suppressed Mn–O bond anisotropy. Chem. Eng. J. 2023, 460, 141744.

[77]

Voronina, N.; Yu, J. H.; Kim, H. J.; Yaqoob, N.; Guillon, O.; Kim, H.; Jung, M. G.; Jung, H. G.; Yazawa, K.; Yashiro, H. et al. Engineering transition metal layers for long lasting anionic redox in layered sodium manganese oxide. Adv. Funct. Mater. 2023, 33, 2210423.

[78]

Yoon, G. H.; Koo, S.; Park, S. J.; Lee, J.; Koo, C.; Song, S. H.; Jeon, T. Y.; Kim, H.; Bae, J. S.; Moon, W. J. et al. Enabling stable and nonhysteretic oxygen redox capacity in Li-excess Na layered oxides. Adv. Energy Mater. 2022, 12, 2103384.

[79]

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Gu, Q. F.; Chou, S. L. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 2019, 7, 9215–9221.

[80]

Liu, H. Q.; Gao, X.; Chen, J.; Gao, J. Q.; Yin, S. Y.; Zhang, S.; Yang, L.; Fang, S. S.; Mei, Y.; Xiao, X. H. et al. Reversible OP4 phase in P2-Na2/3Ni1/3Mn2/3O2 sodium ion cathode. J. Power Sources 2021, 508, 230324.

[81]

Liu, Z. B.; Shen, J. D.; Feng, S. H.; Huang, Y. L.; Wu, D. J.; Li, F. K.; Zhu, Y. M.; Gu, M.; Liu, Q.; Liu, J. et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+. Angew. Chem., Int. Ed. 2021, 60, 20960–20969.

[82]

Somerville, J. W.; Sobkowiak, A.; Tapia-Ruiz, N.; Billaud, J.; Lozano, J. G.; House, R. A.; Gallington, L. C.; Ericsson, T.; Häggström, L.; Roberts, M. R. et al. Nature of the “Z”-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 2019, 12, 2223–2232.

[83]

Zhang, T.; Ji, H. C.; Hou, X. H.; Ji, W. H.; Fang, H.; Huang, Z. Y.; Chen, G. J.; Yang, T. T.; Chu, M. H.; Xu, S. Y. et al. Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy 2022, 100, 107482.

[84]

Jin, T.; Wang, P. F.; Wang, Q. C.; Zhu, K. J.; Deng, T.; Zhang, J. X.; Zhang, W.; Yang, X. Q.; Jiao, L. F.; Wang, C. S. Realizing complete solid–solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 14511–14516.

[85]

Yu, T. Y.; Ryu, H. H.; Han, G.; Sun, Y. K. Understanding the capacity fading mechanisms of O3-type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 2020, 10, 2001609.

[86]

Xie, Y. Y.; Gao, H.; Harder, R.; Li, L. S.; Gim, J.; Che, H. Y.; Wang, H.; Ren, Y.; Zhang, X. Y.; Li, L. X. et al. Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes. ACS Appl. Energy Mater. 2020, 3, 6107–6114.

[87]

Yu, T. Y.; Kim, J.; Hwang, J. Y.; Kim, H.; Han, G.; Jung, H. G.; Sun, Y. K. High-energy O3-Na1−2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries. J. Mater. Chem. A 2020, 8, 13776–13786.

[88]

Xia, F. J.; Zeng, W. H.; Peng, H. Y.; Wang, H.; Sun, C. L.; Zou, J.; Wu, J. S. Revealing structural degradation in layered structure oxides cathode of lithium ion batteries via in-situ transmission electron microscopy. J. Mater. Sci. Technol. 2023, 154, 189–201.

[89]

Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Layla Mehdi, B. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84–92.

[90]

Kim, H.; Kim, M.; Park, S.; Cho, M.; Kim, D. Chemomechanics in Ni-Mn binary cathode for advanced sodium-ion batteries. J. Mater. Chem. A 2021, 9, 24290–24298.

[91]

Xu, C. L.; Cai, H. R.; Chen, Q. L.; Kong, X. Q.; Pan, H. L.; Hu, Y. S. Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 5338–5345.

[92]

You, Y.; Dolocan, A.; Li, W. D.; Manthiram, A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett. 2019, 19, 182–188.

[93]

Sun, Y.; Wang, H.; Meng, D. C.; Li, X. Q.; Liao, X. Z.; Che, H. Y.; Cui, G. J.; Yu, F. P.; Yang, W. M.; Li, L. S. et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration. ACS Appl. Energy Mater. 2021, 4, 2061–2067.

[94]

Lee, S.; Doo, S. W.; Jung, M. S.; Lim, S. G.; Kim, K.; Lee, K. T. Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries. J. Mater. Chem. A 2021, 9, 14074–14084.

[95]

Singer, A.; Zhang, M.; Hy, S.; Cela, D.; Fang, C.; Wynn, T. A.; Qiu, B.; Xia, Y.; Liu, Z.; Ulvestad, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 2018, 3, 641–647.

[96]

Lu, X.; Wang, Y. S.; Liu, P.; Gu, L.; Hu, Y. S.; Li, H.; Demopoulos, G. P.; Chen, L. Q. Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale. Phys. Chem. Chem. Phys. 2014, 16, 21946–21952.

[97]

Mu, L. Q.; Feng, X.; Kou, R. H.; Zhang, Y.; Guo, H.; Tian, C. X.; Sun, C. J.; Du, X. W.; Nordlund, D.; Xin, H. L. et al. Deciphering the cathode–electrolyte interfacial chemistry in sodium layered cathode materials. Adv. Energy Mater. 2018, 8, 1801975.

[98]

You, Y.; Xin, S.; Asl, H. Y.; Li, W. D.; Wang, P. F.; Guo, Y. G.; Manthiram, A. Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries. Chem 2018, 4, 2124–2139.

[99]

Ji, H. C.; Zhai, J. J.; Chen, G. J.; Qiu, X.; Fang, H.; Zhang, T.; Huang, Z. Y.; Zhao, W. G.; Wang, Z. H.; Chu, M. H. et al. Surface engineering suppresses the failure of biphasic sodium layered cathode for high performance sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2109319.

[100]

Feng, J.; Luo, S. H.; Sun, M. Y.; Cong, J.; Yan, S. X.; Wang, Q.; Zhang, Y. H.; Liu, X.; Mu, W. N.; Hou, P. Q. Investigation of Ti-substitution and MnPO4 coating effects on structural and electrochemical properties of P2-Na0.67TixNi0.33Mn0.67−xO2 cathode materials. Appl. Surf. Sci. 2022, 600, 154147.

[101]

Sun, H. H.; Hwang, J. Y.; Yoon, C. S.; Heller, A.; Mullins, C. B. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode for sodium-ion batteries. ACS Nano 2018, 12, 12912–12922.

[102]

Yuan, T.; Sun, Y. Y.; Li, S. Q.; Che, H. Y.; Zheng, Q. F.; Ni, Y. J.; Zhang, Y. X.; Zou, J.; Zang, X. X.; Wei, S. H. et al. Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration. Nano Res. 2023, 16, 6890–6902.

[103]

Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.

[104]

Alvarado, J.; Ma, C. Z.; Wang, S.; Nguyen, K.; Kodur, M.; Meng, Y. S. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 26518–26530.

[105]

Kaliyappan, K.; Liu, J.; Lushington, A.; Li, R. Y.; Sun, X. L. Highly stable Na2/3(Mn0.54Ni0.13Co0.13)O2 cathode modified by atomic layer deposition for sodium-ion batteries. ChemSusChem 2015, 8, 2537–2543.

[106]

Kaliyappan, K.; Liu, J.; Xiao, B. W.; Lushington, A.; Li, R. Y.; Sham, T. K.; Sun, X. L. Enhanced performance of P2-Na0.66(Mn0.54Co0.13Ni0.13)O2 cathode for sodium-ion batteries by ultrathin metal oxide coatings via atomic layer deposition. Adv. Funct. Mater. 2017, 27, 1701870.

[107]

Lee, B. H.; Yoon, B.; Anderson, V. R.; George, S. M. Alucone alloys with tunable properties using alucone molecular layer deposition and Al2O3 atomic layer deposition. J. Phys. Chem. C 2012, 116, 3250–3257.

[108]

Lee, B. H.; Yoon, B.; Abdulagatov, A. I.; Hall, R. A.; George, S. M. Growth and properties of hybrid organic–inorganic metalcone films using molecular layer deposition techniques. Adv. Funct. Mater. 2013, 23, 532–546.

[109]

Kaliyappan, K.; Or, T.; Deng, Y. P.; Hu, Y. F.; Bai, Z. Y.; Chen, Z. W. Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone. Adv. Funct. Mater. 2020, 30, 1910251.

[110]

Zhang, Y.; Pei, Y.; Liu, W.; Zhang, S.; Xie, J. J.; Xia, J.; Nie, S.; Liu, L.; Wang, X. Y. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 2020, 382, 122697.

[111]

Wang, Y.; Tang, K.; Li, X. L.; Yu, R. Z.; Zhang, X. H.; Huang, Y.; Chen, G. R.; Jamil, S.; Cao, S.; Xie, X. et al. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem. Eng. J. 2019, 372, 1066–1076.

[112]

Shao, Y. Q.; Wang, X. X.; Li, B. C.; Ma, H. R.; Chen, J. J.; Wang, D. J.; Dong, C. L.; Mao, Z. Y. Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries. Electrochim. Acta 2023, 442, 141915.

[113]

Deng, Q.; Zheng, F. H.; Zhong, W. T.; Pan, Q. C.; Liu, Y. Z.; Li, Y. P.; Li, Y. J.; Hu, J. H.; Yang, C. H.; Liu, M. L. Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries. Chem. Eng. J. 2021, 404, 126446.

[114]

Tang, K.; Huang, Y.; Xie, X.; Cao, S.; Liu, L.; Liu, M.; Huang, Y. H.; Chang, B. B.; Luo, Z. G.; Wang, X. Y. The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries. Chem. Eng. J. 2020, 384, 123234.

[115]

Quyen, N. Q.; Van Nguyen, T.; Thang, H. H.; Thao, P. M.; Van Nghia, N. Carbon coated NaLi0.2Mn0.8O2 as a superb cathode material for sodium ion batteries. J. Alloys Compd. 2021, 866, 158950.

[116]

Lin, J. L.; Huang, Q.; Dai, K.; Feng, Y. M.; Luo, X.; Zhou, L. J.; Chen, L. B.; Liang, C. P.; Zhang, C. X.; Wei, W. F. Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure. J. Power Sources 2022, 552, 232235.

[117]

Jayachitra, J.; Richards Joshua, J.; Balamurugan, A.; Sivakumar, N.; Sharmila, V.; Shanavas, S.; Abu Haija, M.; Waqas Alam, M.; BaQais, A. High electrode performance of hydrothermally developed activated C coated O3-NaFeO2 electrode for Na-ion batteries applications. Ceram. Int. 2023, 49, 48–56.

[118]

Lu, D.; Yao, Z. J.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Wu, J. B.; Tu, J. P. Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 15630–15637.

[119]

Lu, D.; Yao, Z. J.; Li, Y. Q.; Zhong, Y.; Wang, X. L.; Xie, D.; Xia, X. H.; Gu, C. D.; Tu, J. P. Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. J. Colloid Interface Sci. 2020, 565, 218–226.

[120]

Su, K.; Chen, J.; Zhang, X.; Feng, J. Z.; Xu, Y. T.; Pu, Y. X.; Wang, C. S.; Ma, P. J.; Wang, Y.; Lang, J. W. Inhibition of zinc dendrites by dopamine modified hexagonal boron nitride electrolyte additive for zinc-ion batteries. J. Power Sources 2022, 548, 232074.

[121]

Hailu Mengesha, T.; Lemma Beshahwured, S.; Wu, Y. S.; Wu, S. H.; Jose, R.; Yang, C. C. A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries. Chem. Eng. J. 2023, 452, 139340.

[122]

Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: A review. Electrochem. Energy Rev. 2022, 5, 2.

[123]

Du, X. Y.; Meng, Y.; Yuan, H. Y.; Xiao, D. High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 2023, 56, 132–140.

[124]

Zhou, Y. N.; Xiao, Z. C.; Han, D. Z.; Wang, S. N.; Chen, J. N.; Tang, W.; Yang, M. Y.; Shao, L.; Shu, C. Y.; Hua, W. B. et al. Inhibition of the P3-O3 phase transition via local symmetry tuning in P3-type layered cathodes for ultra-stable sodium storage. J. Mater. Chem. A 2023, 11, 2618–2626.

[125]
Shen, M. Y.; Wang, J. S.; Ren, Z. H.; Wu, T.; Liu, X.; Chen, L. W.; Li, W. C.; Lu, A. H. Quasi-zero volume strain cathode materials for sodium ion battery through synergetic substitution effect of Li and Mg. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202303812.
[126]

Zhao, Q. Q.; Butt, F. K.; Guo, Z. F.; Wang, L. Q.; Zhu, Y. Q.; Xu, X. Y.; Ma, X. L.; Cao, C. B. High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries. Chem. Eng. J. 2021, 403, 126308.

[127]

Jiao, J. Y.; Wu, K.; Li, N.; Zhao, E. Y.; Yin, W.; Hu, Z. B.; Wang, F. W.; Zhao, J. K.; Xiao, X. L. Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na0.67Fe0.5Mn0.5O2 cathode. J. Energy Chem. 2022, 73, 214–222.

[128]

Shi, Q. H.; Qi, R. J.; Feng, X. C.; Wang, J.; Li, Y.; Yao, Z. P.; Wang, X.; Li, Q. Q.; Lu, X. G.; Zhang, J. J. et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun. 2022, 13, 3205.

[129]

Wang, L. J.; Zhang, X.; Yang, X. H.; Wang, J. L.; Deng, J. Y.; Wang, Y. Z. Co3O4-modified P2-Na2/3Mn0.75Co0.25O2 cathode for Na-ion batteries with high capacity and excellent cyclability. J. Alloys Compd. 2020, 832, 154960.

[130]

Yu, H.; Walsh, M.; Liang, X. H. Improving the comprehensive performance of Na0.7MnO2 for sodium ion batteries by ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 2021, 13, 54884–54893.

[131]

Ma, Z. L.; Xu, H. X.; Liu, Y. X.; Zhang, Q.; Wang, M. T.; Lin, Y. C.; Li, Z.; He, X. X.; Sun, J.; Jiang, R. B. et al. Defect-type AlOx nanointerface boosting layered Mn-based oxide cathode for wide-temperature sodium-ion battery. J. Mater. Chem. A 2022, 10, 24216–24225.

[132]

Li, N.; Wang, S. F.; Zhao, E. Y.; Yin, W.; Zhang, Z. G.; Wu, K.; Xu, J. P.; Kuroiwa, Y.; Hu, Z. B.; Wang, F. W. et al. Tailoring interphase structure to enable high-rate, durable sodium-ion battery cathode. J. Energy Chem. 2022, 68, 564–571.

[133]

Hwang, J. Y.; Yu, T. Y.; Sun, Y. K. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: Facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 2018, 6, 16854–16862.

[134]

Zhang, J. L.; Yu, D. Y. W. Stabilizing Na0.7MnO2 cathode for Na-ion battery via a single-step surface coating and doping process. J. Power Sources 2018, 391, 106–112.

[135]

Dang, R. B.; Li, Q.; Chen, M. M.; Hu, Z. B.; Xiao, X. L. CuO-coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys. Chem. Chem. Phys. 2019, 21, 314–321.

[136]

Yu, Y.; Ning, D.; Li, Q. Y.; Franz, A.; Zheng, L. R.; Zhang, N.; Ren, G. X.; Schumacher, G.; Liu, X. F. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 2021, 38, 130–140.

[137]

Kong, W. J.; Yang, W. Y.; Ning, D.; Li, Q. Y.; Zheng, L. R.; Yang, J. B.; Sun, K.; Chen, D. F.; Liu, X. F. Tuning anionic/cationic redox chemistry in a P2-type Na0.67Mn0.5Fe0.5O2 cathode material via a synergic strategy. Sci. China Mater. 2020, 63, 1703–1718.

[138]

Li, Z. R.; Kong, W. J.; Yu, Y.; Zhang, J. C.; Wong, D.; Xu, Z. J.; Chen, Z. H.; Schulz, C.; Bartkowiak, M.; Liu, X. F. Tuning bulk O2 and nonbonding oxygen state for reversible anionic redox chemistry in P2-layered cathodes. Angew. Chem., Int. Ed. 2022, 61, e202115552.

[139]

Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

[140]

Jiao, J. Y.; Wu, K.; Dang, R. B.; Li, N.; Deng, X.; Liu, X. F.; Hu, Z. B.; Xiao, X. L. A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: An effective solution to capacity attenuation. Electrochim. Acta 2021, 384, 138362.

[141]

Hu, S. J.; Li, Y.; Chen, Y. H.; Peng, J. M.; Zhou, T. F.; Pang, W. K.; Didier, C.; Peterson, V. K.; Wang, H. Q.; Li, Q. Y. et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv. Energy Mater. 2019, 9, 1901795.

[142]

Xia, F.; Tie, D.; Wang, J.; Song, H. L.; Wen, W.; Ye, X. X.; Wu, J. S.; Hou, Y. L.; Lu, X. G.; Zhao, Y. F. Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Mater. 2021, 42, 209–218.

[143]

Xia, X.; Liu, T.; Cheng, C.; Li, H. T.; Yan, T. R.; Hu, H. L.; Shen, Y. H.; Ju, H. X.; Chan, T. S.; Wu, Z. W. et al. Suppressing the dynamic oxygen evolution of sodium layered cathodes through synergistic surface dielectric polarization and bulk site-selective Co-doping. Adv. Mater. 2023, 35, 2209556.

[144]

Hwang, J. Y.; Oh, S. M.; Myung, S. T.; Chung, K. Y.; Belharouak, I.; Sun, Y. K. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 2015, 6, 6865.

[145]

Li, X. Y.; Liang, L. W.; Su, M. S.; Wang, L. X.; Zhang, Y. M.; Sun, J. F.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries. Adv. Energy Mater. 2023, 13, 2203701.

[146]

Bao, S.; Luo, S. H.; Wang, Z. Y.; Yan, S. X.; Wang, Q.; Li, J. Y. Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J. Power Sources 2018, 396, 404–411.

[147]

Wu, T. H.; Zhang, X.; Wang, Y. Z.; Zhang, N.; Li, H. F.; Guan, Y.; Xiao, D. D.; Liu, S. Q.; Yu, H. J. Gradient “single-crystal” Li-rich cathode materials for high-stable lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2210154.

[148]

Wang, D.; Deng, Y. P.; Liu, Y. H.; Jiang, Y.; Zhong, B. H.; Wu, Z. G.; Guo, X. D.; Chen, Z. W. Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode. Nano Energy 2023, 110, 108340.

[149]

Wu, K.; Li, N.; Hao, K. R.; Yin, W.; Wang, M.; Jia, G. F.; Lee, Y. L.; Dang, R. B.; Deng, X.; Xiao, X. L. et al. Multiple influences of nickel concentration gradient structure and yttrium element substitution on the structural and electrochemical performances of the NaNi0.25Mn0.25Fe0.5O2 cathode material. J. Phys. Chem. C 2021, 125, 20171–20183.

[150]

Chen, C.; Han, Z.; Chen, S. Q.; Qi, S.; Lan, X. Y.; Zhang, C. C.; Chen, L.; Wang, P.; Wei, W. F. Core–shell layered oxide cathode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 7144–7152.

[151]

Liang, X. H.; Yu, T. Y.; Ryu, H. H.; Sun, Y. K. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2022, 47, 515–525.

[152]

Lin, Z. H.; Xia, Q. B.; Wang, W. L.; Li, W. S.; Chou, S. L. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 2019, 1, 376–389.

[153]

Wang, E. H.; Niu, Y. B.; Yin, Y. X.; Guo, Y. G. Manipulating electrode/electrolyte interphases of sodium-ion batteries: Strategies and perspectives. ACS Mater. Lett. 2021, 3, 18–41.

[154]

Eshetu, G. G.; Martinez-Ibañez, M.; Sánchez-Diez, E.; Gracia, I.; Li, C. M.; Rodriguez-Martinez, L. M.; Rojo, T.; Zhang, H.; Armand, M. Electrolyte additives for room-temperature, sodium-based, rechargeable batteries. Chem.—Asian J. 2018, 13, 2770–2780.

[155]

Song, J. H.; Xiao, B. W.; Lin, Y. H.; Xu, K.; Li, X. L. Interphases in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703082.

[156]

Liu, Q.; Wu, F.; Mu, D. B.; Wu, B. R. A theoretical study on Na+ solvation in carbonate ester and ether solvents for sodium-ion batteries. Phys. Chem. Chem. Phys. 2020, 22, 2164–2175.

[157]

Mosallanejad, B.; Malek, S. S.; Ershadi, M.; Daryakenari, A. A.; Cao, Q.; Boorboor Ajdari, F.; Ramakrishna, S. Cycling degradation and safety issues in sodium-ion batteries: Promises of electrolyte additives. J. Electroanal. Chem. 2021, 895, 115505.

[158]
Zhu, C. L.; Wu, D. X.; Wang, Z. S.; Wang, H. P.; Liu, J. D.; Guo, K. L.; Liu, Q. H.; Ma, J. M. Optimizing NaF-rich solid electrolyte interphase for stabilizing sodium metal batteries by electrolyte additive. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202214195.
[159]

von Aspern, N.; Röschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Fluorine and lithium: Ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem., Int. Ed. 2019, 58, 15978–16000.

[160]

Pahari, D.; Chowdhury, A.; Das, D.; Paul, T.; Puravankara, S. The evolution of structure–property relationship of P2-type Na0.67Ni0.33Mn0.67O2 by vanadium substitution and organic electrolyte combinations for sodium-ion batteries. J. Solid State Electrochem. 2023, 27, 2067–2082.

[161]
Zhao, X. X.; Gu, Z. Y.; Guo, J. Z.; Wang, X. T.; Liang, H. J.; Xie, D.; Li, W. H.; Jia, W. Q.; Wu, X. L. Constructing bidirectional fluorine-rich electrode/electrolyte interphase via solvent redistribution toward long-term sodium battery. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12474.
[162]

Zhang, Z. C.; Hu, L. B.; Wu, H. M.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 2013, 6, 1806–1810.

[163]

Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.

[164]

Kumar, H.; Detsi, E.; Abraham, D. P.; Shenoy, V. B. Fundamental mechanisms of solvent decomposition involved in solid–electrolyte interphase formation in sodium ion batteries. Chem. Mater. 2016, 28, 8930–8941.

[165]

Wu, S. L.; Su, B. Z.; Ni, K.; Pan, F.; Wang, C. L.; Zhang, K. L.; Yu, D. Y. W.; Zhu, Y. W.; Zhang, W. J. Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2002737.

[166]

Zeng, Z. Q.; Jiang, X. Y.; Li, R.; Yuan, D. D.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 2016, 3, 1600066.

[167]

Shi, C. G.; Shen, C. H.; Peng, X. X.; Luo, C. X.; Shen, L. F.; Sheng, W. J.; Fan, J. J.; Wang, Q.; Zhang, S. J.; Xu, B. B. et al. A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: Green and simple additive. Nano Energy 2019, 65, 104084.

[168]

Han, G. B.; Lee, J. N.; Lee, D. J.; Lee, H.; Song, J.; Lee, H.; Ryou, M. H.; Park, J. K.; Lee, Y. M. Enhanced cycling performance of lithium metal secondary batteries with succinic anhydride as an electrolyte additive. Electrochim. Acta 2014, 115, 525–530.

[169]

Fan, J. J.; Dai, P.; Shi, C. G.; Wen, Y. F.; Luo, C. X.; Yang, J.; Song, C.; Huang, L.; Sun, S. G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2010500.

[170]

Che, H. Y.; Yang, X. R.; Wang, H.; Liao, X. Z.; Zhang, S. S.; Wang, C. S.; Ma, Z. F. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. J. Power Sources 2018, 407, 173–179.

[171]

Chen, J. E.; Huang, Z. G.; Wang, C. Y.; Porter, S.; Wang, B. F.; Lie, W.; Liu, H. K. Sodium-difluoro(oxalato)borate (NaDFOB): A new electrolyte salt for Na-ion batteries. Chem. Commun. 2015, 51, 9809–9812.

[172]

Huang, Y. X.; Zhao, L. Z.; Li, L.; Xie, M.; Wu, F.; Chen, R. J. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 2019, 31, 1808393.

[173]

Wang, S. M.; Li, C. L.; Fan, X. Q.; Wen, S. X.; Lu, H. L.; Dong, H.; Wang, J.; Quan, Y.; Li, S. Y. Selection of sodium salt electrolyte compatible with Na0.67Ni0.15Fe0.2Mn0.65O2 cathode for sodium-ion batteries. Energy Technol. 2021, 9, 2100190.

[174]

Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032.

[175]

Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

[176]

Chen, C.; Wu, M. Q.; Liu, J. H.; Xu, Z. Q.; Zaghib, K.; Wang, Y. S. Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. J. Power Sources 2020, 471, 228455.

[177]

Jia, H.; Kim, J. M.; Gao, P. Y.; Xu, Y. B.; Engelhard, M. H.; Matthews, B. E.; Wang, C. M.; Xu, W. A systematic study on the effects of solvating solvents and additives in localized high-concentration electrolytes over electrochemical performance of lithium-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202218005.

[178]

Jin, Y.; Xu, Y. B.; Xiao, B. W.; Engelhard, M. H.; Yi, R.; Vo, T. D.; Matthews, B. E.; Li, X. L.; Wang, C. M.; Le, P. M. L. et al. Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries. Adv. Funct. Mater. 2022, 32, 2204995.

[179]

Jin, Y.; Le, P. M. L.; Gao, P. Y.; Xu, Y. B.; Xiao, B. W.; Engelhard, M. H.; Cao, X.; Vo, T. D.; Hu, J. T.; Zhong, L. R. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 2022, 7, 718–725.

[180]

Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Li, W. H.; Xi, X. T.; Yang, X.; Liang, H. J.; Feng, X.; Wu, X. L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125.

[181]

Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

[182]

Hirsh, H. S.; Sayahpour, B.; Shen, A.; Li, W. K.; Lu, B. Y.; Zhao, E. Y.; Zhang, M. H.; Meng, Y. S. Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 2021, 42, 78–87.

[183]

Hasa, I.; Dou, X. W.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 2016, 310, 26–31.

[184]

Li, Y.; Wu, F.; Li, Y.; Liu, M. Q.; Feng, X.; Bai, Y.; Wu, C. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 2022, 51, 4484–4536.

[185]

Liang, H. J.; Gu, Z. Y.; Zhao, X. X.; Guo, J. Z.; Yang, J. L.; Li, W. H.; Li, B.; Liu, Z. M.; Li, W. L.; Wu, X. L. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem., Int. Ed. 2021, 60, 26837–26846.

[186]

Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

[187]

Wang, Y. D.; Jiang, R.; Liu, Y. C.; Zheng, H.; Fang, W.; Liang, X.; Sun, Y.; Zhou, R. L.; Xiang, H. F. Enhanced sodium metal/electrolyte interface by a localized high-concentration electrolyte for sodium metal batteries: First-principles calculations and experimental studies. ACS Appl. Energy Mater. 2021, 4, 7376–7384.

[188]

Song, J. H.; Wang, K.; Zheng, J. M.; Engelhard, M. H.; Xiao, B. W.; Hu, E. Y.; Zhu, Z. H.; Wang, C. M.; Sui, M. L.; Lin, Y. H. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 2020, 5, 1718–1725.

[189]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[190]

Cui, C. Y.; Fan, X. L.; Zhou, X. Q.; Chen, J.; Wang, Q. C.; Ma, L.; Yang, C. Y.; Hu, E. Y.; Yang, X. Q.; Wang, C. S. Structure and interface design enable stable Li-rich cathode. J. Am. Chem. Soc. 2020, 142, 8918–8927.

[191]

Zhao, C.; Li, C.; Liu, H.; Qiu, Q.; Geng, F. S.; Shen, M.; Tong, W.; Li, J. X.; Hu, B. W. Coexistence of (O2)n and trapped molecular O2 as the oxidized species in P2-type sodium 3d layered oxide and stable interface enabled by highly fluorinated electrolyte. J. Am. Chem. Soc. 2021, 143, 18652–18664.

[192]

Lamb, J.; Manthiram, A. Stable sodium-based batteries with advanced electrolytes and layered-oxide cathodes. ACS Appl. Mater. Interfaces 2022, 14, 28865–28872.

[193]

Feng, J. K.; Zhang, Z.; Li, L. F.; Yang, J.; Xiong, S. L.; Qian, Y. T. Ether-based nonflammable electrolyte for room temperature sodium battery. J. Power Sources 2015, 284, 222–226.

[194]

Liu, X. W.; Jiang, X. Y.; Zhong, F. P.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2(PO4)3 electrodes. ACS Appl. Mater. Interfaces 2019, 11, 27833–27838.

[195]

Yu, Y.; Che, H. Y.; Yang, X. R.; Deng, Y. H.; Li, L. S.; Ma, Z. F. Non-flammable organic electrolyte for sodium-ion batteries. Electrochem. Commun. 2020, 110, 106635.

[196]

Jin, Y.; Xu, Y. B.; Le, P. M. L.; Vo, T. D.; Zhou, Q.; Qi, X. G.; Engelhard, M. H.; Matthews, B. E.; Jia, H.; Nie, Z. M. et al. Highly reversible sodium ion batteries enabled by stable electrolyte–electrode interphases. ACS Energy Lett. 2020, 5, 3212–3220.

Nano Research
Pages 1441-1464
Cite this article:
Zhao Q, Wang R, Gao M, et al. Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17(3): 1441-1464. https://doi.org/10.1007/s12274-023-6133-9
Topics:

1021

Views

11

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 21 July 2023
Revised: 24 August 2023
Accepted: 25 August 2023
Published: 09 October 2023
© Tsinghua University Press 2023
Return