AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries

Wanqing Fan1Ying Huang1( )Meng Yu1Kaihang She1Jingren Gou2Zheng Zhang2( )
MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

We prepared composite solid electrolytes (CSEs) with continuous ion transport pathways by filling polyethylene oxide (PEO) polymer matrices into fibers containing interconnected metal-organic frameworks (MOFs). The CSEs showed excellent stability to lithium metal, and the solid-state lithium metal batteries (SSLMBs) achieved outstanding cycling performance.

Abstract

Polyethylene oxide (PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries (SSLMBs). However, practical applications are hindered by the lower conductivity and poor interfacial stability. Here, we propose a strategy to construct a three-dimensional (3D) fiber network of metal-organic frameworks (MOFs). Composite solid electrolytes (CSEs) with continuous ion transport pathways were fabricated by filling a PEO polymer matrix in fibers containing interconnected MOFs. This 3D fiber network provides a fast Li+ transport path and effectively improves the ionic conductivity (1.36 × 10−4 S·cm−1, 30 °C). In addition, the network of interconnected MOFs not only effectively traps the anions, but also provides sufficient mechanical strength to prevent the growth of Li dendrites. Benefiting from the advantages of structural design, the CSEs stabilize the Li/electrolyte interface and extend the cycle life of the Li-symmetric cells to 3000 h. The assembled SSLMBs exhibit excellent cycling performance at both room and high temperatures. In addition, the constructed pouch cells can provide an areal capacity of 0.62 mA·h·cm−2, which can still operate under extreme conditions. This work provides a new strategy for the design of CSEs with continuous structure and stable operation of SSLMBs.

Electronic Supplementary Material

Download File(s)
12274_2023_6135_MOESM1_ESM.pdf (2.6 MB)

References

[1]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[2]

Lin, X. D.; Yu, J.; Effat, M. B.; Zhou, G. D.; Robson, M. J.; Kwok, S. C. T.; Li, H. J.; Zhan, S. Y.; Shang, Y. L.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 2021, 31, 2010261.

[3]

Park, S.; Jin, H. J.; Yun, Y. S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 2020, 32, 2002193.

[4]

Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

[5]

Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402.

[6]

Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem., Int. Ed. 2018, 57, 2096–2100.

[7]

Wu, Z. J.; Xie, Z. K.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sust. Energ. Rev. 2019, 109, 367–385.

[8]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[9]

Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

[10]

Chen, H.; Adekoya, D.; Hencz, L.; Ma, J.; Chen, S.; Yan, C.; Zhao, H. J.; Cui, G. L.; Zhang, S. Q. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 2020, 10, 2000049.

[11]

Wan, Z. P.; Lei, D. N.; Yang, W.; Liu, C.; Shi, K.; Hao, X. G.; Shen, L.; Lv, W.; Li, B. H.; Yang, Q. H. et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 2019, 29, 1805301.

[12]

Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

[13]

Zhang, Z.; Huang, Y.; Zhang, G. Z.; Chao, L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 41, 631–641.

[14]

Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. J. Energy Chem. 2021, 60, 259–271.

[15]

He, W.; Ding, H.; Chen, X.; Yang, W. S. Three-dimensional LLZO/PVDF-HFP fiber network-enhanced ultrathin composite solid electrolyte membrane for dendrite-free solid-state lithium metal batteries. J. Membr. Sci. 2023, 665, 121095.

[16]

Han, S. A.; Qutaish, H.; Lee, J. W.; Park, M. S.; Kim, J. H. Metal-organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2023, 5, e12283.

[17]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro Lett. 2021, 13, 203.

[18]

Zhang, X. L.; Shen, F. Y.; Long, X.; Zheng, S. Y.; Ruan, Z. Q.; Cai, Y. P.; Hong, X. J.; Zheng, Q. F. Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 2022, 52, 201–209.

[19]

Hao, Z. D.; Wu, Y.; Zhao, Q.; Tang, J. D.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Jin, Y. H.; Wang, H. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102938.

[20]

Guan, J. Z.; Feng, X. P.; Zeng, Q. H.; Li, Z. F.; Liu, Y.; Chen, A. Q.; Wang, H. H.; Cui, W.; Liu, W.; Zhang, L. Y. A new in situ prepared MOF-natural polymer composite electrolyte for solid lithium metal batteries with superior high- rate capability and long-term cycling stability at ultrahigh current density. Adv. Sci. 2023, 10, 2203916.

[21]

Zhang, S.; Huang, Y.; Wang, J. M.; Han, X. P.; Zhang, G. Z.; Sun, X. Cu1.5Mn1.5O4 hollow sphere decorated Ti3C2Tx MXene for flexible all-solid-state supercapacitor and electromagnetic wave absorber. Carbon 2023, 209, 118006.

[22]

Lei, Z. W.; Shen, J. L.; Zhang, W. D.; Wang, Q. R.; Wang, J.; Deng, Y. H.; Wang, C. Y. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259–2267.

[23]

Han, Q. Y.; Wang, S. Q.; Jiang, Z. Y.; Hu, X. C.; Wang, H. H. Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 20514–20521.

[24]

Dong, R.; Zheng, J.; Yuan, J. L.; Li, Y.; Zhang, T. W.; Liu, Y.; Liu, Y. X.; Sun, Y.; Zhong, B. H.; Chen, Y. X. et al. A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. J. Colloid Interface Sci. 2022, 620, 47–56.

[25]

Li, Z. L.; Wang, S. X.; Shi, J. K.; Liu, Y.; Zheng, S. Y.; Zou, H. Q.; Chen, Y. L.; Kuang, W. X.; Ding, K.; Chen, L. Y. et al. A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 2022, 47, 262–270.

[26]

Pan, P.; Zhang, M. M.; Cheng, Z. L.; Jiang, L. Y.; Mao, J. T.; Ni, C. K.; Chen, Q.; Zeng, Y.; Hu, Y.; Fu, K. Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater. 2022, 47, 279–287.

[27]

Guo, J. H.; Feng, F.; Zhao, S. Q.; Wang, R.; Yang, M.; Shi, Z. H.; Ren, Y. F.; Ma, Z. F.; Chen, S. L.; Liu, T. X. Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small 2023, 19, 2206740.

[28]

Gao, L.; Luo, S. B.; Li, J. X.; Cheng, B. W.; Kang, W. M.; Deng, N. P. Core–shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 43, 266–274.

[29]

Yu, M.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Fan, W. Q.; She, K. H. In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption. Carbon 2023, 208, 311–321.

[30]

Cho, S. K.; Oh, K. S.; Shin, J. C.; Lee, J. E.; Lee, K. M.; Cho, J.; Lee, W. B.; Kwak, S. K.; Lee, M.; Lee, S. Y. Anion-rectifying polymeric single lithium-ion conductors. Adv. Funct. Mater. 2021, 32, 2107753.

[31]

Zhao, R.; Wu, Y. X.; Liang, Z. B.; Gao, L.; Xia, W.; Zhao, Y. S.; Zou, R. Q. Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403.

[32]

Liang, J. N.; Luo, J.; Sun, Q.; Yang, X. F.; Li, R. Y.; Sun, X. L. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019, 21, 308–334.

[33]

Wei, Y.; Liu, T. H.; Zhou, W. J.; Cheng, H.; Liu, X. T.; Kong, J.; Shen, Y.; Xu, H. H.; Huang, Y. H. Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte. Adv. Energy Mater. 2023, 13, 2203547.

[34]

Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

[35]

Liu, P.; Yi, H. T.; Zheng, S. Y.; Li, Z. P.; Zhu, K. J.; Sun, Z. Q.; Jin, T.; Jiao, L. F. Regulating deposition behavior of sodium ions for dendrite-free sodium-metal anode. Adv. Energy Mater. 2021, 11, 2101976.

[36]

Yang, G. H.; Liang, X. H.; Zheng, S. S.; Chen, H. B.; Zhang, W. T.; Li, S. N.; Pan, F. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. eScience 2022, 2, 79–86.

[37]

Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.

[38]

Zheng, Y.; Yang, N.; Gao, R.; Li, Z. Q.; Dou, H. Z.; Li, G. R.; Qian, L. T.; Deng, Y. P.; Liang, J. Q.; Yang, L. X. et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, 2203417.

[39]

Yang, Y.; Wu, Q.; Wang, D.; Ma, C. C.; Chen, Z.; Su, Q. T.; Zhu, C. Z.; Li, C. H. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J. Membr. Sci. 2020, 612, 118424.

[40]

Yang, Q.; Li, G.; Shi, D. J.; Gao, L.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Composite solid electrolyte with continuous and fast organic–inorganic ion transport highways created by 3D crimped nanofibers@functional ceramic nanowires. Small 2023, 19, 2301521.

[41]

Li, C. G.; Deng, S. L.; Feng, W. H.; Cao, Y. W.; Bai, J. X.; Tian, X. C.; Dong, Y. F.; Xia, F. A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 2023, 19, 2300066.

[42]

Hu, A. J.; Sun, Z. Q.; Hou, Q.; Duan, J. N.; Li, C.; Dou, W. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. Regulating lithium plating/stripping behavior by a composite polymer electrolyte endowed with designated ion channels. Small 2022, 18, 2205571.

[43]

Liu, X. Z.; Liang, Q.; Chen, L. N.; Tang, J. Y.; Liu, J. J.; Tang, M.; Wang, Z. B. PEO-based solid-state electrolytes reinforced by high strength, interconnected MOF networks. ACS Appl. Energy Mater. 2023, 6, 4881–4891.

[44]

Zhang, Y.; Bahi, A.; Ko, F.; Liu, J. Polyacrylonitrile-reinforced composite gel polymer electrolytes for stable potassium metal anodes. Small 2022, 18, 2107186.

[45]

Feng, J. W.; Wang, J. Y.; Gu, Q.; Thitisomboon, W.; Yao, D. H.; Deng, Y. H.; Gao, P. Room-temperature all-solid-state lithium metal batteries based on ultrathin polymeric electrolytes. J. Mater. Chem. A 2022, 10, 13969–13977.

[46]

Zhai, P. B.; Yang, Z. L.; Wei, Y.; Guo, X. X.; Gong, Y. J. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2200967.

[47]

Deng, T.; Cao, L. S.; He, X. Z.; Li, A. M.; Li, D.; Xu, J. J.; Liu, S. F.; Bai, P. X.; Jin, T.; Ma, L. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 2021, 7, 3052–3068.

[48]

Su, Y.; Zhang, X. D.; Du, C. C.; Luo, Y.; Chen, J. Z.; Yan, J. T.; Zhu, D. D.; Geng, L.; Liu, S. X.; Zhao, J. et al. An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 2022, 18, 2202069.

[49]

Sheng, O. W.; Zheng, J. H.; Ju, Z. J.; Jin, C. B.; Wang, Y.; Chen, M.; Nai, J. W.; Liu, T. F.; Zhang, W. K.; Liu, Y. J. et al. In situ construction of a lif-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 2020, 32, 2000223.

[50]

Wang, Z. T.; Zhou, H.; Meng, C. F.; Zhang, L.; Cai, Y. J.; Yuan, A. H. Anion-immobilized and fiber-reinforced hybrid polymer electrolyte for advanced lithium-metal batteries. ChemElectroChem 2020, 7, 2660–2664.

[51]

Du, L. L.; Zhang, B.; Wang, X. F.; Dong, C. H.; Mai, L. Q.; Xu, L. 3D frameworks in composite polymer electrolytes: Synthesis, mechanisms, and applications. Chem. Eng. J. 2023, 451, 138787.

[52]

Li, Z.; Sha, W. X.; Guo, X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Mater. Interfaces 2019, 11, 26920–26927.

Nano Research
Pages 2719-2727
Cite this article:
Fan W, Huang Y, Yu M, et al. Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries. Nano Research, 2024, 17(4): 2719-2727. https://doi.org/10.1007/s12274-023-6135-7
Topics:

629

Views

6

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 July 2023
Revised: 23 August 2023
Accepted: 25 August 2023
Published: 10 October 2023
© Tsinghua University Press 2023
Return