Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Herein we proposed a data-driven high-throughput principle to screen high-performance single-atom materials for hydrogen evolution reaction (HER) and hydrogen sensing by combing the theoretical computations and a topology-based multi-scale convolution kernel machine learning algorithm. After the rational training by 25 groups of data and prediction of all 168 groups of single-atom materials for HER and sensing, respectively, a high prediction accuracy (> 0.931 R2 score) was achieved by our model. Results show that the promising HER catalysts include Pt atoms in C4 and Sc atoms in C1N3 coordination environment. Moreover, Y atoms in C4 coordination environment and Cd atoms in C2N2-ortho coordination environment were predicted with great potential as hydrogen sensing materials. This method provides a way to accelerate the discovery of innovative materials by avoiding the time-consuming empirical principles in experiments.
Castelvecchi, D. How the hydrogen revolution can help save the planet - and how it can't. Nature 2022, 611, 440–443.
Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.
Zhang, B. W.; Lui, Y. H.; Ni, H. W.; Hu, S. Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 2017, 38, 553–560.
Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Luong, H. M.; Pham, M. T.; Guin, T.; Madhogaria, R. P.; Phan, M. H.; Larsen, G. K.; Nguyen, T. D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414.
Zhang, B. W.; Zhu, C. Q.; Wu, Z. S.; Stavitski, E.; Lui, Y. H.; Kim, T. H.; Liu, H.; Huang, L.; Luan, X. Z.; Zhou, L. et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020, 20, 136–144.
Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 2018, 45, 448–455.
Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.
Jiang, D. F.; Otitoju, T. A.; Ouyang, Y. Y.; Shoparwe, N. F.; Wang, S.; Zhang, A. L.; Li, S. X. A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 2021, 11, 1039.
Pan, H. Y.; Zhou, L. H.; Zheng, W.; Liu, X. H.; Zhang, J.; Pinna, N. Atomic layer deposition to heterostructures for application in gas sensors. Int. J. Extrem. Manuf. 2023, 5, 022008.
Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, e2206783.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Singla, M.; Sharma, D.; Jaggi, N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: A DFT study. Int. J. Hydrogen Energy 2021, 46, 16188–16201.
Eroglu, E.; Aydin, S.; Şimşek, M. Effect of boron substitution on hydrogen storage in Ca/DCV graphene: A first-principle study. Int. J. Hydrogen Energy 2019, 44, 27511–27528.
Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.
Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.
Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Sim, E.; Song, S.; Vuckovic, S.; Burke, K. Improving results by improving densities: Density-corrected density functional theory. J. Am. Chem. Soc. 2022, 144, 6625–6639.
Dobrojevic, M.; Bacanin, N. IoT as a backbone of intelligent homestead automation. Electronics 2022, 11, 1004.
Dada, E. G.; Bassi, J. S.; Chiroma, H.; Abdulhamid, S. M.; Adetunmbi, A. O.; Ajibuwa, O. E. Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon 2019, 5, e01802.
Shah, H. A.; Liu, J.; Yang, Z.; Feng, J. Review of machine learning methods for the prediction and reconstruction of metabolic pathways. Front. Mol. Biosci. 2021, 8, 634141.
Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.
Jiao, D. X.; Zhang, D. T.; Wang, D. W.; Fan, J. C.; Ma, X. C.; Zhao, J. X.; Zheng, W. T.; Cui, X. Q. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C-1 products. Nano Res. 2023, 16, 11511–11520.
Tripathi, K.; Gupta, V.; Awasthi, V.; Pant, K. K.; Upadhyayula, S. Forecasting catalytic property-performance correlations for CO2 hydrogenation to methanol via surrogate machine learning framework. Adv. Sustainable Syst. 2023, 7, 2200416.
Wang, J. F.; Panchal, A. A.; Canepa, P. Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. Mater. Futures 2023, 2, 015101.
Wen, T. Q.; Zhang, L. F.; Wang, H.; E, W.; Srolovitz, D. J. Deep potentials for materials science. Mater. Futures 2022, 1, 022601.
Sun, M. Z.; Wu, T.; Dougherty, A. W.; Lam, M.; Huang, B. L.; Li, Y. L.; Yan, C. H. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 2021, 11, 2003796.
Umer, M.; Umer, S.; Zafari, M.; Ha, M. R.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 6679–6689.
Wang, X.; Bian, W. Y.; Zhang, T. Y.; Zhao, Y. J.; Shao, M. W.; Lin, H. P.; Liu, Y.; Huang, H.; Kang, Z. H. Highly crystalline core dominated the catalytic performance of carbon dot for cyclohexane to adipic acid reaction. Nano Res. 2022, 15, 7662–7669.
Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.
Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.
Rong, C.; Zhou, L.; Zhang, B. W.; Xuan, F. Z. Machine learning for mechanics prediction of 2D MXene-based aerogels. Compos. Commun. 2023, 38, 101474.
Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.
Chen, H.; Wu, Q. N.; Wang, Y. F.; Zhao, Q. F.; Ai, X.; Shen, Y. C.; Zou, X. X. D-sp orbital hybridization: A strategy for activity improvement of transition metal catalysts. Chem. Commun. 2022, 58, 7730–7740.
Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.
Wu, L. P.; Hu, S. L.; Yu, W. S.; Shen, S. P.; Li, T. Stabilizing mechanism of single-atom catalysts on a defective carbon surface. npj Comput. Mater. 2020, 6, 23.
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.
Wang, J. C.; Oschatz, M.; Biemelt, T.; Borchardt, L.; Senkovska, I.; Lohe, M. R.; Kaskel, S. Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. J. Mater. Chem. 2012, 22, 23893–23899.
Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.
Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.
Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.
Wu, L. P.; Guo, T.; Li, T. Data-driven high-throughput rational design of double-atom catalysts for oxygen evolution and reduction. Adv. Funct. Mater. 2022, 32, 2203439.
Kumar, N.; Haviar, S.; Zeman, P. Three-layer PdO/CuWO4/CuO system for hydrogen gas sensing with reduced humidity interference. Nanomaterials 2021, 11, 3456.
Hashtroudi, H.; Yu, A. M.; Juodkazis, S.; Shafiei, M. Two-dimensional Dy2O3-Pd-PDA/rGO heterojunction nanocomposite: Synergistic effects of hybridisation, UV illumination and relative humidity on hydrogen gas sensing. Chemosensors 2022, 10, 78.
Li, J.; Li, B.; Huang, H.; Yan, S.; Yuan, C. Z.; Wu, N. T.; Guo, D. L.; Liu, X. M. Polyvinylpyrrolidone gel based Pt/Ni(OH)2 heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 27061–27071.
Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.
Xing, H. R.; Hu, P.; Li, S. L.; Zuo, Y. G.; Han, J. Y.; Hua, X. J.; Wang, K. S.; Yang, F.; Feng, P. F.; Chang, T. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review. J. Mater. Sci. Technol. 2021, 62, 180–194.
Liao, X. B.; Lu, R. H.; Xia, L. X.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z. Y.; Zhao, Y. Density functional theory for electrocatalysis. Energy Environ. Mater. 2022, 5, 157–185.
Bursch, M.; Mewes, J. M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem., Int. Ed. 2022, 61, e202205735.
Adekoya, O. C.; Adekoya, G. J.; Sadiku, E. R.; Hamam, Y.; Ray, S. S. Application of DFT calculations in designing polymer-based drug delivery systems: An overview. Pharmaceutics 2022, 14, 1972.
Mohandes, S. R.; Zhang, X. Q.; Mahdiyar, A. A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing 2019, 340, 55–75.
Nazemi, E.; Dinca, M.; Movafeghi, A.; Rokrok, B.; Dastjerdi, M. H. C. Estimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural network. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 940, 344–350.
Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression. Renewable Sustainable Energy Rev. 2019, 108, 513–538.
Xiang, Q.; Wang, X. D.; Lai, J.; Song, Y. F.; Li, R.; Lei, L. Multi-scale group-fusion convolutional neural network for high-resolution range profile target recognition. IET Radar Sonar Navig. 2022, 16, 1997–2016.
Hu, X.; Zhang, D. H.; Tan, R. J.; Xie, Q. Controlled cooling temperature prediction of hot-rolled steel plate based on multi-scale convolutional neural network. Metals 2022, 12, 1455.
Yang, X.; Zhu, Y. T.; Guo, Y. Q.; Zhou, D. K. An image super-resolution network based on multi-scale convolution fusion. Vis. Comput. 2022, 38, 4307–4317.