AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Data-driven rational design of single-atom materials for hydrogen evolution and sensing

Lei Zhou1,2,3Pengfei Tian1,2,3( )Bowei Zhang1,2,3( )Fu-Zhen Xuan1,2,3( )
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Show Author Information

Graphical Abstract

Single atom materials have shown great potential in the field of hydrogen evolution and sensing. Herein, we used machine learning to help screen high-performance single atom materials toward electrochemical hydrogen evolution and hydrogen sensing.

Abstract

Herein we proposed a data-driven high-throughput principle to screen high-performance single-atom materials for hydrogen evolution reaction (HER) and hydrogen sensing by combing the theoretical computations and a topology-based multi-scale convolution kernel machine learning algorithm. After the rational training by 25 groups of data and prediction of all 168 groups of single-atom materials for HER and sensing, respectively, a high prediction accuracy (> 0.931 R2 score) was achieved by our model. Results show that the promising HER catalysts include Pt atoms in C4 and Sc atoms in C1N3 coordination environment. Moreover, Y atoms in C4 coordination environment and Cd atoms in C2N2-ortho coordination environment were predicted with great potential as hydrogen sensing materials. This method provides a way to accelerate the discovery of innovative materials by avoiding the time-consuming empirical principles in experiments.

Electronic Supplementary Material

Download File(s)
12274_2023_6137_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Castelvecchi, D. How the hydrogen revolution can help save the planet - and how it can't. Nature 2022, 611, 440–443.

[2]

Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.

[3]

Zhang, B. W.; Lui, Y. H.; Ni, H. W.; Hu, S. Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 2017, 38, 553–560.

[4]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[5]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[6]

Luong, H. M.; Pham, M. T.; Guin, T.; Madhogaria, R. P.; Phan, M. H.; Larsen, G. K.; Nguyen, T. D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414.

[7]

Zhang, B. W.; Zhu, C. Q.; Wu, Z. S.; Stavitski, E.; Lui, Y. H.; Kim, T. H.; Liu, H.; Huang, L.; Luan, X. Z.; Zhou, L. et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020, 20, 136–144.

[8]

Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 2018, 45, 448–455.

[9]

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

[10]

Jiang, D. F.; Otitoju, T. A.; Ouyang, Y. Y.; Shoparwe, N. F.; Wang, S.; Zhang, A. L.; Li, S. X. A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 2021, 11, 1039.

[11]

Pan, H. Y.; Zhou, L. H.; Zheng, W.; Liu, X. H.; Zhang, J.; Pinna, N. Atomic layer deposition to heterostructures for application in gas sensors. Int. J. Extrem. Manuf. 2023, 5, 022008.

[12]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, e2206783.

[13]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[14]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[15]

Singla, M.; Sharma, D.; Jaggi, N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: A DFT study. Int. J. Hydrogen Energy 2021, 46, 16188–16201.

[16]

Eroglu, E.; Aydin, S.; Şimşek, M. Effect of boron substitution on hydrogen storage in Ca/DCV graphene: A first-principle study. Int. J. Hydrogen Energy 2019, 44, 27511–27528.

[17]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[18]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[19]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[20]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[21]
Putz, M. V.; Mingos, D. M. P. Applications of Density Functional Theory to Biological and Bioinorganic Chemistry; Springer: Berlin, 2013; pp 5–7.
[22]

Sim, E.; Song, S.; Vuckovic, S.; Burke, K. Improving results by improving densities: Density-corrected density functional theory. J. Am. Chem. Soc. 2022, 144, 6625–6639.

[23]

Dobrojevic, M.; Bacanin, N. IoT as a backbone of intelligent homestead automation. Electronics 2022, 11, 1004.

[24]

Dada, E. G.; Bassi, J. S.; Chiroma, H.; Abdulhamid, S. M.; Adetunmbi, A. O.; Ajibuwa, O. E. Machine learning for email spam filtering: Review, approaches and open research problems. Heliyon 2019, 5, e01802.

[25]

Shah, H. A.; Liu, J.; Yang, Z.; Feng, J. Review of machine learning methods for the prediction and reconstruction of metabolic pathways. Front. Mol. Biosci. 2021, 8, 634141.

[26]

Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.

[27]

Jiao, D. X.; Zhang, D. T.; Wang, D. W.; Fan, J. C.; Ma, X. C.; Zhao, J. X.; Zheng, W. T.; Cui, X. Q. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C-1 products. Nano Res. 2023, 16, 11511–11520.

[28]

Tripathi, K.; Gupta, V.; Awasthi, V.; Pant, K. K.; Upadhyayula, S. Forecasting catalytic property-performance correlations for CO2 hydrogenation to methanol via surrogate machine learning framework. Adv. Sustainable Syst. 2023, 7, 2200416.

[29]

Wang, J. F.; Panchal, A. A.; Canepa, P. Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. Mater. Futures 2023, 2, 015101.

[30]

Wen, T. Q.; Zhang, L. F.; Wang, H.; E, W.; Srolovitz, D. J. Deep potentials for materials science. Mater. Futures 2022, 1, 022601.

[31]

Sun, M. Z.; Wu, T.; Dougherty, A. W.; Lam, M.; Huang, B. L.; Li, Y. L.; Yan, C. H. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 2021, 11, 2003796.

[32]

Umer, M.; Umer, S.; Zafari, M.; Ha, M. R.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 6679–6689.

[33]

Wang, X.; Bian, W. Y.; Zhang, T. Y.; Zhao, Y. J.; Shao, M. W.; Lin, H. P.; Liu, Y.; Huang, H.; Kang, Z. H. Highly crystalline core dominated the catalytic performance of carbon dot for cyclohexane to adipic acid reaction. Nano Res. 2022, 15, 7662–7669.

[34]

Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.

[35]

Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.

[36]

Rong, C.; Zhou, L.; Zhang, B. W.; Xuan, F. Z. Machine learning for mechanics prediction of 2D MXene-based aerogels. Compos. Commun. 2023, 38, 101474.

[37]

Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

[38]

Chen, H.; Wu, Q. N.; Wang, Y. F.; Zhao, Q. F.; Ai, X.; Shen, Y. C.; Zou, X. X. D-sp orbital hybridization: A strategy for activity improvement of transition metal catalysts. Chem. Commun. 2022, 58, 7730–7740.

[39]

Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

[40]

Wu, L. P.; Hu, S. L.; Yu, W. S.; Shen, S. P.; Li, T. Stabilizing mechanism of single-atom catalysts on a defective carbon surface. npj Comput. Mater. 2020, 6, 23.

[41]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

[42]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[43]

Wang, J. C.; Oschatz, M.; Biemelt, T.; Borchardt, L.; Senkovska, I.; Lohe, M. R.; Kaskel, S. Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. J. Mater. Chem. 2012, 22, 23893–23899.

[44]

Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.

[45]

Ma, R. G.; Ren, X. D.; Xia, B. Y.; Zhou, Y.; Sun, C.; Liu, Q.; Liu, J. J.; Wang, J. C. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 2016, 9, 808–819.

[46]

Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

[47]

Wu, L. P.; Guo, T.; Li, T. Data-driven high-throughput rational design of double-atom catalysts for oxygen evolution and reduction. Adv. Funct. Mater. 2022, 32, 2203439.

[48]

Kumar, N.; Haviar, S.; Zeman, P. Three-layer PdO/CuWO4/CuO system for hydrogen gas sensing with reduced humidity interference. Nanomaterials 2021, 11, 3456.

[49]

Hashtroudi, H.; Yu, A. M.; Juodkazis, S.; Shafiei, M. Two-dimensional Dy2O3-Pd-PDA/rGO heterojunction nanocomposite: Synergistic effects of hybridisation, UV illumination and relative humidity on hydrogen gas sensing. Chemosensors 2022, 10, 78.

[50]

Li, J.; Li, B.; Huang, H.; Yan, S.; Yuan, C. Z.; Wu, N. T.; Guo, D. L.; Liu, X. M. Polyvinylpyrrolidone gel based Pt/Ni(OH)2 heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 27061–27071.

[51]

Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

[52]

Xing, H. R.; Hu, P.; Li, S. L.; Zuo, Y. G.; Han, J. Y.; Hua, X. J.; Wang, K. S.; Yang, F.; Feng, P. F.; Chang, T. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review. J. Mater. Sci. Technol. 2021, 62, 180–194.

[53]

Liao, X. B.; Lu, R. H.; Xia, L. X.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z. Y.; Zhao, Y. Density functional theory for electrocatalysis. Energy Environ. Mater. 2022, 5, 157–185.

[54]

Bursch, M.; Mewes, J. M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem., Int. Ed. 2022, 61, e202205735.

[55]

Adekoya, O. C.; Adekoya, G. J.; Sadiku, E. R.; Hamam, Y.; Ray, S. S. Application of DFT calculations in designing polymer-based drug delivery systems: An overview. Pharmaceutics 2022, 14, 1972.

[56]

Mohandes, S. R.; Zhang, X. Q.; Mahdiyar, A. A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing 2019, 340, 55–75.

[57]

Nazemi, E.; Dinca, M.; Movafeghi, A.; Rokrok, B.; Dastjerdi, M. H. C. Estimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural network. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 940, 344–350.

[58]

Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression. Renewable Sustainable Energy Rev. 2019, 108, 513–538.

[59]

Xiang, Q.; Wang, X. D.; Lai, J.; Song, Y. F.; Li, R.; Lei, L. Multi-scale group-fusion convolutional neural network for high-resolution range profile target recognition. IET Radar Sonar Navig. 2022, 16, 1997–2016.

[60]

Hu, X.; Zhang, D. H.; Tan, R. J.; Xie, Q. Controlled cooling temperature prediction of hot-rolled steel plate based on multi-scale convolutional neural network. Metals 2022, 12, 1455.

[61]

Yang, X.; Zhu, Y. T.; Guo, Y. Q.; Zhou, D. K. An image super-resolution network based on multi-scale convolution fusion. Vis. Comput. 2022, 38, 4307–4317.

Nano Research
Pages 3352-3358
Cite this article:
Zhou L, Tian P, Zhang B, et al. Data-driven rational design of single-atom materials for hydrogen evolution and sensing. Nano Research, 2024, 17(4): 3352-3358. https://doi.org/10.1007/s12274-023-6137-5
Topics:

1100

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 03 August 2023
Revised: 20 August 2023
Accepted: 22 August 2023
Published: 28 October 2023
© Tsinghua University Press 2023
Return