Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The selective growth of semiconducting single-walled carbon nanotubes (s-SWCNTs) is of great importance in many high-end applications represented by nanoelectronics. Here, we developed a general approach to grow horizontally aligned s-SWCNT arrays on stable temperature (ST)-cut quartz with bimetallic catalysts using carbon monoxide (CO) as both catalyst reductant and single component carbon feedstock under atmospheric pressure. The disproportionation of CO produces not only carbon species for SWCNT growth but also CO2, which could act as an in-situ etchant to remove both amorphous carbon and metallic tubes. The employment of bimetallic catalyst and quartz substrate facilitates the selective etching by narrowing the diameter distribution of as-grown SWCNT arrays. At the optimized conditions, we realized the selective growth of horizontally aligned s-SWCNT arrays with the content above 97% using CoCu catalysts, confirmed by Raman characterization and electrical measurements of the fabricated field effect transistor devices. This CO-based process in selective growth of s-SWCNTs has demonstrated its feasibility and universality by the broad growth window and applicability for other bimetallic catalysts, such as FeCu and CoMn. It possesses a practical potential in obtaining semiconducting channel materials for the scalable fabrication of CNT-based devices.
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206.
De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.
Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.
Chen, Y. G.; Lyu, M.; Zhang, Z. Y.; Yang, F.; Li, Y. Controlled preparation of single-walled carbon nanotubes as materials for electronics. ACS Cent. Sci. 2022, 8, 1490–1505.
Hong, G.; Zhou, M.; Zhang, R. X.; Hou, S. M.; Choi, W.; Woo, Y. S.; Choi, J. Y.; Liu, Z. F.; Zhang, J. Separation of metallic and semiconducting single-walled carbon nanotube arrays by "scotch tape". Angew. Chem., Int. Ed. 2011, 50, 6819–6823.
Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J. Mater. Chem. 2011, 21, 11815–11821.
Xie, X.; Jin, S. H.; Wahab, M. A.; Islam, A. E.; Zhang, C. X.; Du, F.; Seabron, E.; Lu, T. J.; Dunham, S. N.; Cheong, H. I. et al. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nat. Commun. 2014, 5, 5332.
Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J. E.; Wang, D. W.; Yenilmez, E. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.
Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.
Hong, G.; Zhang, B.; Peng, B. H.; Zhang, J.; Choi, W. M.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Direct growth of semiconducting single-walled carbon nanotube array. J. Am. Chem. Soc. 2009, 131, 14642–14643.
Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019–14026.
Qin, X. J.; Peng, F.; Yang, F.; He, X. H.; Huang, H. X.; Luo, D.; Yang, J.; Wang, S.; Liu, H. C.; Peng, L. M. et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett. 2014, 14, 512–517.
Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.
Li, J. H.; Liu, K. H.; Liang, S. B.; Zhou, W. W.; Pierce, M.; Wang, F.; Peng, L. M.; Liu, J. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity. ACS Nano 2014, 8, 554–562.
Yu, B.; Hou, P. X.; Li, F.; Liu, B.; Liu, C.; Cheng, H. M. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon 2010, 48, 2941–2947.
Liao, Y. P.; Zhang, Z.; Zhang, Q.; Wei, N.; Ahmad, S.; Tian, Y.; Kauppinen, E. I. Single-walled carbon nanotube thin film with high semiconducting purity by aerosol etching toward thin-film transistors. ACS Appl. Nano Mater. 2021, 4, 9673–9679.
Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.
Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition. J. Am. Chem. Soc 2016, 138, 6727–6730.
Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.
He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon 2013, 52, 590–594.
He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V. et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 2013, 3, 1460.
Tang, L.; Li, T. T.; Li, C. W.; Ling, L.; Zhang, K.; Yao, Y. G. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. Nanoscale 2015, 7, 19699–19704.
Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97.
Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the hipco process: A parametric study. J. Vac. Sci. Technol. A 2001, 19, 1800–1805.
Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.
Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y. Q.; Resasco, D. E. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 2006, 110, 2108–2115.
Yuan, Y.; Karahan, H. E.; Yıldırım, C.; Wei, L.; Birer, Ö.; Zhai, S. L.; Lau, R.; Chen, Y. “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale 2016, 8, 17705–17713.
He, M. S.; Li, D.; Yang, T.; Shang, D. H.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Liu, Q.; Jiang, H.; Kauppinen, E. A robust CoxMg1−xO catalyst for predominantly growing (6,5) single-walled carbon nanotubes. Carbon 2019, 153, 389–395.
Zhao, X.; Zhang, X. R.; Liu, Q. D.; Zhang, Z. Y.; Li, Y. Growth of single-walled carbon nanotubes on substrates using carbon monoxide as carbon source. Chem. Res. Chin. Univ. 2021, 37, 1125–1129.
Zhang, D. Q.; Yang, J.; Yang, F.; Li, R. M.; Li, M. H.; Ji, D.; Li, Y. (n,m) assignments and quantification for single-walled carbon nanotubes on SiO2/Si substrates by resonant Raman spectroscopy. Nanoscale 2015, 7, 10719–10727.
Wang, B.; Poa, C. H.; Wei, L.; Li, L. J.; Yang, Y. H.; Chen, Y. (n,m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. J. Am. Chem. Soc. 2007, 129, 9014–9019.
Zhang, Z. Y.; Yao, Y. X.; Li, Y. Modulating the diameter of bulk single-walled carbon nanotubes grown by FeCo/MgO catalyst. Acta Phys. Chim. Sin. 2021, 37, 2101055.
Yang, F.; Wang, X.; Li, M. H.; Liu, X. Y.; Zhao, X. L.; Zhang, D. Q.; Zhang, Y.; Yang, J.; Li, Y. Templated synthesis of single-walled carbon nanotubes with specific structure. Acc. Chem. Res. 2016, 49, 606–615.
Li, W. S.; Hou, P. X.; Liu, C.; Sun, D. M.; Yuan, J. T.; Zhao, S. Y.; Yin, L. C.; Cong, H. T.; Cheng, H. M. High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 2013, 7, 6831–6839.
He, M. S.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.
He, M. S.; Fedotov, P. V.; Chernov, A.; Obraztsova, E. D.; Jiang, H.; Wei, N.; Cui, H. Z.; Sainio, J.; Zhang, W. G.; Jin, H. et al. Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source. Carbon 2016, 108, 521–528.
Li, J. H.; Ke, C. T.; Liu, K. H.; Li, P.; Liang, S. H.; Finkelstein, G.; Wang, F.; Liu, J. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 2014, 8, 8564–8572.
Cui, K. H.; Kumamoto, A.; Xiang, R.; An, H.; Wang, B.; Inoue, T.; Chiashi, S.; Ikuhara, Y.; Maruyama, S. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 2016, 8, 1608–1617.