AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective growth of semiconducting single-walled carbon nanotubes solely from carbon monoxide

Xue Zhao1Ningfei Gao2Zeyao Zhang1,3,4Qidong Liu1Jian Sheng1Yijie Hu1Ruoming Li1Haitao Xu2,3,4Lianmao Peng3Yan Li1,3,5( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing HuaTanYuanXin Electronics Technology Ltd. Co., Beijing 101399, China
Institute of Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China
PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China
Show Author Information

Graphical Abstract

By using carbon monoxide as both single component catalyst reductant and carbon feedstock, horizontally aligned semiconducting single-walled carbon nanotube arrays were selectively grown with bimetallic catalysts.

Abstract

The selective growth of semiconducting single-walled carbon nanotubes (s-SWCNTs) is of great importance in many high-end applications represented by nanoelectronics. Here, we developed a general approach to grow horizontally aligned s-SWCNT arrays on stable temperature (ST)-cut quartz with bimetallic catalysts using carbon monoxide (CO) as both catalyst reductant and single component carbon feedstock under atmospheric pressure. The disproportionation of CO produces not only carbon species for SWCNT growth but also CO2, which could act as an in-situ etchant to remove both amorphous carbon and metallic tubes. The employment of bimetallic catalyst and quartz substrate facilitates the selective etching by narrowing the diameter distribution of as-grown SWCNT arrays. At the optimized conditions, we realized the selective growth of horizontally aligned s-SWCNT arrays with the content above 97% using CoCu catalysts, confirmed by Raman characterization and electrical measurements of the fabricated field effect transistor devices. This CO-based process in selective growth of s-SWCNTs has demonstrated its feasibility and universality by the broad growth window and applicability for other bimetallic catalysts, such as FeCu and CoMn. It possesses a practical potential in obtaining semiconducting channel materials for the scalable fabrication of CNT-based devices.

Electronic Supplementary Material

Download File(s)
12274_2023_6138_MOESM1_ESM.pdf (4.8 MB)

References

[1]

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

[2]

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206.

[3]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[4]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[5]

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

[6]

Chen, Y. G.; Lyu, M.; Zhang, Z. Y.; Yang, F.; Li, Y. Controlled preparation of single-walled carbon nanotubes as materials for electronics. ACS Cent. Sci. 2022, 8, 1490–1505.

[7]

Hong, G.; Zhou, M.; Zhang, R. X.; Hou, S. M.; Choi, W.; Woo, Y. S.; Choi, J. Y.; Liu, Z. F.; Zhang, J. Separation of metallic and semiconducting single-walled carbon nanotube arrays by "scotch tape". Angew. Chem., Int. Ed. 2011, 50, 6819–6823.

[8]

Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J. Mater. Chem. 2011, 21, 11815–11821.

[9]

Xie, X.; Jin, S. H.; Wahab, M. A.; Islam, A. E.; Zhang, C. X.; Du, F.; Seabron, E.; Lu, T. J.; Dunham, S. N.; Cheong, H. I. et al. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nat. Commun. 2014, 5, 5332.

[10]

Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J. E.; Wang, D. W.; Yenilmez, E. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.

[11]

Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

[12]

Hong, G.; Zhang, B.; Peng, B. H.; Zhang, J.; Choi, W. M.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Direct growth of semiconducting single-walled carbon nanotube array. J. Am. Chem. Soc. 2009, 131, 14642–14643.

[13]

Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019–14026.

[14]

Qin, X. J.; Peng, F.; Yang, F.; He, X. H.; Huang, H. X.; Luo, D.; Yang, J.; Wang, S.; Liu, H. C.; Peng, L. M. et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett. 2014, 14, 512–517.

[15]

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

[16]

Li, J. H.; Liu, K. H.; Liang, S. B.; Zhou, W. W.; Pierce, M.; Wang, F.; Peng, L. M.; Liu, J. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity. ACS Nano 2014, 8, 554–562.

[17]

Yu, B.; Hou, P. X.; Li, F.; Liu, B.; Liu, C.; Cheng, H. M. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon 2010, 48, 2941–2947.

[18]

Liao, Y. P.; Zhang, Z.; Zhang, Q.; Wei, N.; Ahmad, S.; Tian, Y.; Kauppinen, E. I. Single-walled carbon nanotube thin film with high semiconducting purity by aerosol etching toward thin-film transistors. ACS Appl. Nano Mater. 2021, 4, 9673–9679.

[19]

Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

[20]

Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition. J. Am. Chem. Soc 2016, 138, 6727–6730.

[21]

Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.

[22]

He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon 2013, 52, 590–594.

[23]

He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V. et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 2013, 3, 1460.

[24]

Tang, L.; Li, T. T.; Li, C. W.; Ling, L.; Zhang, K.; Yao, Y. G. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. Nanoscale 2015, 7, 19699–19704.

[25]

Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97.

[26]

Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the hipco process: A parametric study. J. Vac. Sci. Technol. A 2001, 19, 1800–1805.

[27]

Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.

[28]

Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y. Q.; Resasco, D. E. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 2006, 110, 2108–2115.

[29]

Yuan, Y.; Karahan, H. E.; Yıldırım, C.; Wei, L.; Birer, Ö.; Zhai, S. L.; Lau, R.; Chen, Y. “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale 2016, 8, 17705–17713.

[30]

He, M. S.; Li, D.; Yang, T.; Shang, D. H.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Liu, Q.; Jiang, H.; Kauppinen, E. A robust CoxMg1−xO catalyst for predominantly growing (6,5) single-walled carbon nanotubes. Carbon 2019, 153, 389–395.

[31]

Zhao, X.; Zhang, X. R.; Liu, Q. D.; Zhang, Z. Y.; Li, Y. Growth of single-walled carbon nanotubes on substrates using carbon monoxide as carbon source. Chem. Res. Chin. Univ. 2021, 37, 1125–1129.

[32]

Zhang, D. Q.; Yang, J.; Yang, F.; Li, R. M.; Li, M. H.; Ji, D.; Li, Y. (n,m) assignments and quantification for single-walled carbon nanotubes on SiO2/Si substrates by resonant Raman spectroscopy. Nanoscale 2015, 7, 10719–10727.

[33]

Wang, B.; Poa, C. H.; Wei, L.; Li, L. J.; Yang, Y. H.; Chen, Y. (n,m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. J. Am. Chem. Soc. 2007, 129, 9014–9019.

[34]

Zhang, Z. Y.; Yao, Y. X.; Li, Y. Modulating the diameter of bulk single-walled carbon nanotubes grown by FeCo/MgO catalyst. Acta Phys. Chim. Sin. 2021, 37, 2101055.

[35]

Yang, F.; Wang, X.; Li, M. H.; Liu, X. Y.; Zhao, X. L.; Zhang, D. Q.; Zhang, Y.; Yang, J.; Li, Y. Templated synthesis of single-walled carbon nanotubes with specific structure. Acc. Chem. Res. 2016, 49, 606–615.

[36]

Li, W. S.; Hou, P. X.; Liu, C.; Sun, D. M.; Yuan, J. T.; Zhao, S. Y.; Yin, L. C.; Cong, H. T.; Cheng, H. M. High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 2013, 7, 6831–6839.

[37]

He, M. S.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.

[38]

He, M. S.; Fedotov, P. V.; Chernov, A.; Obraztsova, E. D.; Jiang, H.; Wei, N.; Cui, H. Z.; Sainio, J.; Zhang, W. G.; Jin, H. et al. Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source. Carbon 2016, 108, 521–528.

[39]

Li, J. H.; Ke, C. T.; Liu, K. H.; Li, P.; Liang, S. H.; Finkelstein, G.; Wang, F.; Liu, J. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 2014, 8, 8564–8572.

[40]

Cui, K. H.; Kumamoto, A.; Xiang, R.; An, H.; Wang, B.; Inoue, T.; Chiashi, S.; Ikuhara, Y.; Maruyama, S. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 2016, 8, 1608–1617.

Nano Research
Pages 12720-12726
Cite this article:
Zhao X, Gao N, Zhang Z, et al. Selective growth of semiconducting single-walled carbon nanotubes solely from carbon monoxide. Nano Research, 2023, 16(11): 12720-12726. https://doi.org/10.1007/s12274-023-6138-4
Topics:

799

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 July 2023
Revised: 27 August 2023
Accepted: 28 August 2023
Published: 14 October 2023
© Tsinghua University Press 2023
Return