Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers

Hongbin Liu1,2Qing Sun1,3()Jun Cheng1Hongqiang Zhang1Xiao Xu1Yuanyuan Li1Zhen Zeng1Yue Zhao4Deping Li1Jingyu Lu2()Lijie Ci1,3 ()
State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Research Center for Carbon Nanomaterials, Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
Show Author Information

Graphical Abstract

View original image Download original image
The nanotube structure of the filler is conducive to the simultaneous surface and interior transportation of lithium ions, so the constructed electrolyte membrane exhibits superior electrochemical performance and stability at room temperature.

Abstract

Due to the increasing demand and wide applications of lithium-ion batteries, higher requirements have been placed on the energy density and safety. Polymer solid-state electrolytes have gained significant popularity due to their excellent interface compatibility and safety. However, their applications have been greatly restricted by the high crystallinity at room temperature, which hinders the transport of lithium ions. Herein, we utilize inorganic tubular fillers with abundant lone-pair atoms to reduce the crystallinity of the polyethylene oxide (PEO) solid-state electrolyte membrane and improve its ionic conductivity at room temperature, enabling stable operation of the battery. The tubular lone-pair-rich inorganic fillers play a key role in providing avenues for both internal and external charge transportation. The surface lone-pair electrons facilitate the dissociation and transport of lithium ions, while the internally tubular electron-rich layer attracts ions into the cavities, further enhancing the ion transport. After 100 cycles at room temperature, the lithium battery loaded with this solid-state electrolyte membrane delivers a specific capacity of 141.6 mAh·g−1, which is 51.3% higher compared to the membrane without the fillers.

Electronic Supplementary Material

Download File(s)
12274_2023_6142_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Che, Y. H.; Hu, X. S.; Lin, X. K.; Guo, J.; Teodorescu, R. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects. Energy Environ. Sci. 2023, 16, 338–371.

[2]

Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

[3]

Jiang, M.; Wang, F.; Yang, F.; He, H.; Yang, J.; Zhang, W.; Luo, J. Y.; Zhang, J.; Fu, C. P. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 2022, 93, 106793.

[4]

Chen, Y. Q.; Kang, Y. Q.; Zhao, Y.; Wang, L.; Liu, J. L.; Li, Y. X.; Liang, Z.; He, X. M.; Li, X.; Tavajohi, N. et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99.

[5]

Lan, Y. Q.; Yao, W. J.; He, X. L.; Song, T. Y.; Tang, Y. B. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem., Int. Ed. 2020, 59, 9255–9262.

[6]

Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

[7]

Kim, T.; Song, W. T.; Son, D. Y.; Ono, L. K.; Qi, Y. B. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.

[8]

Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

[9]

Wang, Y. B.; Meng, P. Y.; Yang, Z. H.; Jiang, M.; Yang, J.; Li, H. X.; Zhang, J.; Sun, B. D.; Fu, C. P. Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202304229.

[10]

Chen, Y.; Wen, K. H.; Chen, T. H.; Zhang, X. J.; Armand, M.; Chen, S. M. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020, 31, 401–433.

[11]

Liu, H. B.; Meng, X. H.; Chen, Y.; Zhao, Y.; Guo, X. L.; Ma, T. L. Synthesis and surface engineering of composite anodes by coating thin-layer silicon on carbon cloth for lithium storage with high stability and performance. ACS Appl. Energy Mater. 2021, 4, 6982–6990.

[12]

Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L. Q.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109.

[13]

Liu, H. B.; Sun, Q.; Zhang, H. Q.; Cheng, J.; Li, Y. Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F. J.; Li, D. P. et al. The application road of silicon-based anode in lithium-ion batteries: From liquid electrolyte to solid-state electrolyte. Energy Storage Mater. 2023, 55, 244–263.

[14]

Sepulveda, N. A.; Jenkins, J. D.; Edington, A.; Mallapragada, D. S.; Lester, R. K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 2021, 6, 506–516.

[15]

Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 2020, 5, 533–539.

[16]

Zhao, Y.; Liu, H. B.; Meng, X. H.; Liu, A. M.; Chen, Y.; Ma, T. L. A cross-linked tin oxide/polymer composite gel electrolyte with adjustable porosity for enhanced sodium ion batteries. Chem. Eng. J. 2022, 431, 133922.

[17]

Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M. Interface in solid-state lithium battery: Challenges, progress, and outlook. ACS Appl. Mater. Interfaces 2019, 11, 22029–22050.

[18]

Umeshbabu, E.; Zheng, B. Z.; Yang, Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2019, 2, 199–230.

[19]

Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

[20]

Zeng, Z.; Cheng, J.; Li, Y. Y.; Zhang, H. Q.; Li, D. P.; Liu, H. B.; Ji, F. J.; Sun, Q.; Ci, L. J. Composite cathode for all-solid-state lithium batteries: Progress and perspective. Mater. Today Phys. 2023, 32, 101009.

[21]

Cheng, J.; Hou, G. M.; Chen, Q.; Li, D. P.; Li, K. K.; Yuan, Q. H.; Wang, J. J.; Ci, L. J. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 2022, 429, 132343.

[22]

Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

[23]

Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L. P.; Rupp, J. L. M. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 2021, 11, 2002689.

[24]

Pham, M. N.; Subramani, R.; Lin, Y. H.; Lee, Y. L.; Jan, J. S.; Chiu, C. C.; Teng, H. Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chem. Eng. J. 2022, 430, 132948.

[25]

Horowitz, Y.; Schmidt, C.; Yoon, D. H.; Riegger, L. M.; Katzenmeier, L.; Bosch, G. M.; Noked, M.; Ein-Eli, Y.; Janek, J.; Zeier, W. G. et al. Between liquid and all solid: A prospect on electrolyte future in lithium-ion batteries for electric vehicles. Energy Technol. 2020, 8, 2000580.

[26]

Murali, A.; Sakar, M.; Priya, S.; Vijayavarman, V.; Pandey, S.; Sai, R.; Katayama, Y.; Kader, M. A.; Ramanujam, K. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review. Mater. Lett. 2022, 313, 131764.

[27]

Arya, A.; Sharma, A. L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304.

[28]

Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

[29]

Schneier, D.; Harpak, N.; Menkin, S.; Davidi, G.; Goor, M.; Mados, E.; Ardel, G.; Patolsky, F.; Golodnitsky, D.; Peled, E. Analysis of scale-up parameters in 3D silicon-nanowire lithium-battery anodes. J. Electrochem. Soc. 2020, 167, 050511.

[30]

Marzantowicz, M.; Krok, F.; Dygas, J. R.; Florjańczyk, Z.; Zygadło-Monikowska, E. The influence of phase segregation on properties of semicrystalline PEO:LiTFSI electrolytes. Solid State Ionics 2008, 179, 1670–1678.

[31]

Dong, D. R.; Zhou, B.; Sun, Y. F.; Zhang, H.; Zhong, G. M.; Dong, Q. Y.; Fu, F.; Qian, H.; Lin, Z. Y.; Lu, D. R. et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019, 19, 2343–2349.

[32]

Jeon, Y. M.; Kim, S.; Lee, M.; Lee, W. B.; Park, J. H. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 2020, 10, 2003114.

[33]

Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; Jin, H. Y.; Han, X. G. Recent advances in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416.

[34]

Lee, J. Y.; Yu, T. Y.; Chung, P. H.; Lee, W. Y.; Yeh, S. C.; Wu, N. L.; Jeng, R. J. Semi-interpenetrating polymer network electrolytes based on a spiro-twisted benzoxazine for all-solid-state lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 2663–2671.

[35]

Zhao, Y. R.; Huang, Z.; Chen, S. J.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y. H.; Xu, X. X. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65–71.

[36]

Liu, L. H.; Chu, L. H.; Jiang, B.; Li, M. C. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 2019, 331, 89–95.

[37]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[38]

Li, X. L.; Yang, L.; Shao, D. S.; Luo, K. L.; Liu, L.; Wu, Z. Y.; Luo, Z. G.; Wang, X. Y. Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 2020, 137, 48810.

[39]

Judez, X.; Eshetu, G. G.; Li, C. M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2018, 2, 2208–2224.

[40]

Banitaba, S. N.; Semnani, D.; Rezaei, B.; Ensafi, A. A. Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2 nanofiller applicable in lithium-ion batteries. Polym. Adv. Technol. 2019, 30, 1234–1242.

[41]

Bhute, M. V.; Kondawar, S. B. Electrospun poly(vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery. Solid State Ionics 2019, 333, 38–44.

[42]

Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mohamed, E. A. Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J. Mol. Liq. 2018, 260, 237–244.

[43]

Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mousa, M. A. Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite. Mater. Res. Bull. 2013, 48, 1148–1154.

[44]

Liang, H. Y.; Wang, S. H.; Ye, Q.; Zeng, C.; Tong, Z. M.; Ma, Y.; Li, H. Q. Stabilizing the interface of PEO solid electrolyte to lithium metal anode via a g-C3N4 mediator. Chem. Commun. 2022, 58, 10821–10824.

[45]

Sun, Z. J.; Li, Y. H.; Zhang, S. Y.; Shi, L.; Wu, H.; Bu, H. T.; Ding, S. J. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 2019, 7, 11069–11076.

[46]

Sun, Q.; Li, J.; Yang, M. X.; Wang, S.; Zeng, G. F.; Liu, H. B.; Cheng, J.; Li, D. P.; Wei, Y. R.; Si, P. C. et al. Carbon microstructure dependent Li-ion storage behaviors in SiOx/C anodes. Small 2023, 19, 2300759.

[47]

Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

[48]

Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015, 27, 2612–2618.

[49]

Cui, Y. Y.; Liang, X. M.; Chai, J. C.; Cui, Z. L.; Wang, Q. L.; He, W. S.; Liu, X. C.; Liu, Z. H.; Cui, G. L.; Feng, J. W. High performance solid polymer electrolytes for rechargeable batteries: A self-catalyzed strategy toward facile synthesis. Adv. Sci. 2017, 4, 1700174.

[50]

Hsu, S. T.; Tran, B. T.; Subramani, R.; Nguyen, H. T. T.; Rajamani, A.; Lee, M. Y.; Hou, S. S.; Lee, Y. L.; Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J. Power Sources 2020, 449, 227518.

[51]

Zhang, J. J.; Yue, L. P.; Hu, P.; Liu, Z. H.; Qin, B. S.; Zhang, B.; Wang, Q. F.; Ding, G. L.; Zhang, C. J.; Zhou, X. H. et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Sci. Rep. 2014, 4, 6272.

[52]

Li, Y. H.; Sun, Z. J.; Liu, D. Y.; Lu, S. Y.; Li, F.; Gao, G. X.; Zhu, M.; Li, M. T.; Zhang, Y. F.; Bu, H. T. et al. Bacterial cellulose composite solid polymer electrolyte with high tensile strength and lithium dendrite inhibition for long life battery. Energy Environ. Mater. 2021, 4, 434–443.

[53]

Sathya, S.; Pazhaniswamy, S.; Selvin, P. C.; Vengatesan, S.; Stephan, A. M. Physical and interfacial studies on Li0.5La0.5TiO3- incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Energy Fuels 2021, 35, 13402–13410.

[54]

Wei, J. H.; Zheng, X. W.; Lin, W. T.; Si, Y.; Ji, K. M.; Wang, C. Y.; Chen, M. M. Retarding Li dendrites growth via introducing porous g-C3N4 into polymer electrolytes for solid-state lithium metal batteries. J. Alloys Compd. 2022, 909, 164825.

[55]

Guo, Y. P.; Niu, P.; Liu, Y. Y.; Ouyang, Y.; Li, D.; Zhai, T. Y.; Li, H. Q.; Cui, Y. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 2019, 31, 1900342.

[56]

Liang, J. N.; Sun, Q.; Zhao, Y.; Sun, Y. P.; Wang, C. H.; Li, W. H.; Li, M. S.; Wang, D. W.; Li, X.; Liu, Y. L. et al. Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition. J. Mater. Chem. A 2018, 6, 23712–23719.

[57]

Wu, J.; Tian, L. L.; Duan, H. M.; Cheng, Y. H.; Shi, L. Unveiling the working mechanism of g-C3N4 as a protection layer for lithium- and sodium-metal anode. ACS Appl. Mater. Interfaces 2021, 13, 46821–46829.

[58]

Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983–999.

Nano Research
Pages 12727-12737
Cite this article:
Liu H, Sun Q, Cheng J, et al. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers. Nano Research, 2023, 16(11): 12727-12737. https://doi.org/10.1007/s12274-023-6142-8
Topics:
Metrics & Citations  
Article History
Copyright
Return