AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced carrier mobility in MoSe2 by pressure modulation

Zhiying Bai1He Zhang2,3Jiaqi He4Dawei He1Jiarong Wang1Guili Li1Jinxuan Bai1Kun Zhao1Xiaohui Yu2,3,5( )Yongsheng Wang1( )Xiaoxian Zhang1( )
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

Using a spatiotemporal resolved pump-probe setup, the carrier transport performance and relaxation process of MoSe2 under pressure were investigated nondestructively and simultaneously.

Abstract

Two-dimensional (2D) materials hold great potential for the development of next-generation integrated circuits (ICs) at the atomic limit. However, it is still very challenging to build high performance devices. One of the main factors that limit the incorporation of 2D materials into IC technology is their relatively low carrier mobility. Thus, the engineering strategies that focus on optimizing performance continue to emerge. Herein, using a spatiotemporal resolved pump-probe setup, the carrier transport performance and relaxation process of few-layer and bulk MoSe2 under pressure were investigated nondestructively and simultaneously. Our results show that pressure can tune the transport performance effectively. In particular, under pressure regulation, the carrier mobility of the bulk MoSe2 increases by ~ 4 times; meanwhile, the carrier lifetimes of the samples become shorter. Although the processes almost return to their initial state after the pressure release, it is still surprising to see that the carrier mobilities of few-layer and bulk MoSe2 are still ~ 1.5 and 2 times enhanced, and carrier lifetimes are still shorter than the initial state. Combined with the Raman spectra under pressure, we consider that it is caused by the enhanced layer coupling and lattice compression. The combination of enhanced mobility and shortened lifetime in MoSe2 under pressure holds great potential for optoelectronic applications under the deep ocean and deep earth.

Electronic Supplementary Material

Download File(s)
12274_2023_6143_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

[2]

Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

[3]

Chen, J. Y.; Tang, W.; Tian, B. B.; Liu, B.; Zhao, X. X.; Liu, Y. P.; Ren, T. H.; Liu, W.; Geng, D. C.; Jeong, H. Y. et al. Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 2016, 3, 1500033.

[4]

Zhu, C.; Zhao, X. X.; Wang, X. W.; Chen, J. Q.; Yu, P.; Liu, S.; Zhou, J. D.; Fu, Q. D.; Zeng, Q. S.; He, Y. M. et al. Direct laser patterning of a 2D WSe2 logic circuit. Adv. Funct. Mater. 2021, 31, 2009549.

[5]

Qiao, J.; Wang, S. P.; Wang, Z. M.; He, C.; Zhao, S. Q.; Xiong, X. X.; Wang, S. L.; Zhang, X. X.; Tao, X. T. Ultrasensitive and broadband all-optically controlled THz modulator based on MoTe2/Si van der Waals heterostructure. Adv. Opt. Mater. 2020, 8, 2000160.

[6]

Zheng, W.; Lin, R. C.; Zhang, Z. J.; Huang, F. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces 2018, 10, 27116–27123.

[7]

Qu, Y.; Wu, J. Y.; Yang, Y. Y.; Zhang, Y. N.; Liang, Y.; El Dirani, H.; Crochemore, R.; Demongodin, P.; Sciancalepore, C.; Grillet, C. et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv. Opt. Mater. 2020, 8, 2001048.

[8]

Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C. P.; Heine, T.; Duesberg, G. S. et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018, 18, 3738–3745.

[9]

Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118–151.

[10]

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

[11]

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

[12]

Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Wen, Y.; Jiang, C.; He, J. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Appl. Phys. Lett. 2016, 109, 193111.

[13]

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

[14]

Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

[15]

Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L. W.; Chan, M. S.; Chai, Y. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700.

[16]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[17]

Retamal, J. R. D.; Periyanagounder, D.; Ke, J. J.; Tsai, M. L.; He, J. H. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem. Sci. 2018, 9, 7727–7745.

[18]

Jia, L. N.; Wu, J. Y.; Zhang, Y. N.; Qu, Y.; Jia, B. H.; Chen, Z. G.; Moss, D. J. Fabrication technologies for the on-chip integration of 2D materials. Small Methods 2022, 6, 2101435.

[19]

Chi, Z. H.; Zhao, X. M.; Zhang, H. D.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113, 036802.

[20]

Chi, Z. H.; Chen, X. L.; Yen, F.; Peng, F.; Zhou, Y. H.; Zhu, J. L.; Zhang, Y. J.; Liu, X. D.; Lin, C. L.; Chu, S. Q. et al. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure. Phys. Rev. Lett. 2018, 120, 037002.

[21]

Liu, B.; Lin, L.; Gao, Y.; Ma, Y. Z.; Zhou, P. Y.; Han, D. D.; Gao, C. X. Metallization of molybdenum diselenide under nonhydrostatic compression. J. Phys. Chem. C 2021, 125, 5412–5416.

[22]

Fu, X. P.; Li, F. F.; Lin, J. F.; Gong, Y. B.; Huang, X. L.; Huang, Y. P.; Han, B.; Zhou, Q.; Cui, T. Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2. J. Phys. Chem. Lett. 2017, 8, 3556–3563.

[23]

Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346–353.

[24]

Ma, X. L.; Fu, S. H.; Ding, J. W.; Liu, M.; Bian, A.; Hong, F.; Sun, J. T.; Zhang, X. X.; Yu, X. H.; He, D. W. Robust interlayer exciton in WS2/MoSe2 van der Waals heterostructure under high pressure. Nano Lett. 2021, 21, 8035–8042.

[25]

Li, C. K.; Cheng, W. J.; Zhang, X. Y.; Zhang, P. J.; Zheng, Q. F.; Yan, Z. P.; Han, j.; Dai, G. Y.; Wang, S. M.; Quan, Z. W. et al. Tuning of interlayer interaction in MoS2−WS2 van der Waals heterostructures using hydrostatic pressure. J. Phys. Chem. C. 2023, 127, 7784–7791.

[26]

Zhu, M. Q.; Zhang, Z. N.; Zhang, T.; Liu, D. D.; Zhang, H.; Zhang, Z. X.; Li, Z. L.; Cheng, Y. C.; Huang, W. Exchange between interlayer and intralayer exciton in WSe2/WS2 heterostructure by interlayer coupling engineering. Nano Lett. 2022, 22, 4528–4534.

[27]

Pandey, T.; Nayak, A. P.; Liu, J.; Moran, S. T.; Kim, J. S.; Li, L. J.; Lin, J. F.; Akinwande, D.; Singh, A. K. Pressure-induced charge transfer doping of monolayer graphene/MoS2 heterostructure. Small 2016, 12, 4063–4069.

[28]

Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676.

[29]

Ceballos, F.; Zhao, H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1604509.

[30]

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Böerner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

[31]

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

[32]

Nam, D.; Lee, J. U.; Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 2015, 5, 17113.

[33]

Kim, K.; Lee, J. U.; Nam, D.; Cheong, H. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano 2016, 10, 8113–8120.

[34]

Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

[35]

Sousa, J. H. A.; Araújo, B. S.; Ferreira, R. S.; San-Miguel, A.; Alencar, R. S.; Souza Filho, A. G. Pressure tuning resonance raman scattering in monolayer, trilayer, and many-layer molybdenum disulfide. ACS Appl. Nano Mater. 2022, 5, 14464–14469.

[36]

Cheng, X. R.; Li, Y. Y.; Shang, J. M.; Hu, C. S.; Ren, Y. F.; Liu, M.; Qi, Z. M. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure. Nano Res. 2018, 11, 855–863.

[37]

Cui, Q. N.; Ceballos, F.; Kumar, N.; Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 2014, 8, 2970–2976.

[38]

Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended mono layer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

[39]

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

[40]

Yu, Y. L.; Yu, Y. F.; Xu, C.; Barrette, A.; Gundogdu, K.; Cao, L. Y. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 201111.

[41]

Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 1985, 32, 6601–6609.

[42]

Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater 2020, 8, 1901567.

[43]

Nie, Z. G.; Long, R.; Sun, L. F.; Huang, C. C.; Zhang, J.; Xiong, Q. H.; Hewak, D. W.; Shen, Z. X.; Prezhdo, O. V.; Loh, Z. H. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano 2014, 8, 10931–10940.

[44]

Horng, J.; Stroucken, T.; Zhang, L.; Paik, E. Y.; Deng, H.; Koch, S. W. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 2018, 97, 241404.

[45]

Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681–11688.

[46]

Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455–1460.

[47]

Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204–8210.

[48]

Li, Q. Y.; Sui, L.; Niu, G. M.; Jiang, J. T.; Zhang, Y. T.; Wu, G. R.; Jin, M. X.; Yuan, K. J. Pressure manipulation of interlayer interactions and ultrafast carrier dynamics in few-layer MoS2. J. Phys. Chem. C 2020, 124, 11183–11192.

[49]

Ci, P.; Chen, Y. B.; Kang, J.; Suzuki, R.; Choe, H. S.; Suh, J.; Ko, C.; Park, T.; Shen, K.; Iwasa, Y. et al. Quantifying van der Waals interactions in layered transition metal dichalcogenides from pressure-enhanced valence band splitting. Nano Lett. 2017, 17, 4982–4988.

[50]

Dou, X. M.; Ding, K.; Jiang, D. S.; Fan, X. F.; Sun, B. Q. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 2016, 10, 1619–1624.

[51]

Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

[52]

Smith, L. M.; Wake, D. R.; Wolfe, J. P.; Levi, D.; Klein, M. V.; Klem, J.; Henderson, T.; Morkoç, H. Picosecond imaging of photoexcited carriers in quantum wells: Anomalous lateral confinement at high densities. Phys. Rev. B 1988, 38, 5788–5791.

[53]

Yue, S.; Tian, F.; Sui, X.; Mohebinia, M.; Wu, X. X.; Tong, T.; Wang, Z. M.; Wu, B.; Zhang, Q.; Ren, Z. F. et al. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy. Science 2022, 377, 433–436.

Nano Research
Pages 12738-12744
Cite this article:
Bai Z, Zhang H, He J, et al. Enhanced carrier mobility in MoSe2 by pressure modulation. Nano Research, 2023, 16(11): 12738-12744. https://doi.org/10.1007/s12274-023-6143-7
Topics:

827

Views

1

Crossref

6

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 June 2023
Revised: 16 August 2023
Accepted: 30 August 2023
Published: 12 October 2023
© Tsinghua University Press 2023
Return