AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage

Xu Li1,2Xiaohui Sun1,2Jiuyue Zhang1,2Song Xue1,2( )Linjie Zhi1,2,3( )
Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, China
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

A flexible and conductive MXene/polyaniline (PANI) active layer, formed by internal submicron MXene sheets and polyaniline nanorods, offers a stretchable and delicate hierarchical sensing structure. Such a fabric can be used to fabricate a stretchable strip device, which holds multifunctions such as wearable strain sensors, electromagnetic shielding, and supercapacitors.

Abstract

Multifunctional intelligent fabric plays an integral role in health management, human–machine interaction, wireless energy storage and conversion, and many other artificial intelligence fields. Herein, we demonstrate a newly developed MXene/polyaniline (PANI) multifunctional fabric integrated with strain sensing, electrochemical energy storage, and electromagnetic shielding properties. The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100% with a minute strain of 0.5%, maintaining a stable and consistent signal response even after 3000 stretch–release cycles. In addition, the multifunctional fabric exhibits excellent electromagnetic shielding capabilities, achieving a total shielding effectiveness value of up to 43 dB, and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor, offering a maximum specific capacity and energy density of 522.5 mF·cm−2 and 18.16 μWh·cm−2, respectively. Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6150_MOESM1_ESM.pdf (704.7 KB)

References

[1]

Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

[2]

Wang, L. M.; Li, N.; Zhang, Y. F.; Di, P. J.; Li, M. K.; Lu, M.; Liu, K.; Li, Z. H.; Ren, J. Y.; Zhang, L. Q. et al. Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 2022, 5, 3417–3431.

[3]

Zhao, Y.; Gao, W. C.; Dai, K.; Wang, S.; Yuan, Z. Q.; Li, J. N.; Zhai, W.; Zheng, G. Q.; Pan, C. F.; Liu, C. T. et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv. Mater. 2021, 33, 2102332.

[4]

Zhao, Z. Y.; Xia, K. Q.; Hou, Y.; Zhang, Q. H.; Ye, Z. Z.; Lu, J. G. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers. Chem. Soc. Rev. 2021, 50, 12702–12743.

[5]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[6]

Li, Y. T.; Miao, X. H.; Chen, J. Y.; Jiang, G. M.; Liu, Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater. Des. 2021, 197, 109273.

[7]

Peng, J.; Wang, B.; Cheng, H. N.; Yang, R. H.; Yin, Y. J.; Xu, S.; Wang, C. X. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/polypyrrole composite conductive networks for body movement monitoring. Compos. Sci. Technol. 2022, 227, 109561.

[8]

Vu, L. Q.; Kim, K. H.; Schulze, L. J. H.; Rajulu, S. L. Lumbar posture assessment with fabric strain sensors. Comput. Biol. Med. 2020, 118, 103624.

[9]

Peng, J.; Han, W. Y.; Tan, Y. S.; Zhang, N. Y.; Yin, Y. J.; Wang, C. X. A highly sensitive, superhydrophobic fabric strain sensor based on polydopamine template-assisted synergetic conductive network. Appl. Surf. Sci. 2023, 617, 156535.

[10]

Wang, B.; Peng, J.; Han, W. Y.; Yin, Y. J.; Wang, C. X. Stretchable and conductive cotton-based fabric for strain sensing, electrothermal heating, and energy storing. Cellulose 2022, 29, 7989–8000.

[11]

Gao, C.; Liu, Y. C.; Gu, F.; Chen, Z.; Su, Z. Y.; Du, H.; Xu, D.; Liu, K. S.; Xu, W. L. Biodegradable ecoflex encapsulated bacterial cellulose/polypyrrole strain sensor detects motion with high sensitivity, flexibility and scalability. Chem. Eng. J. 2023, 460, 141769.

[12]

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

[13]

Yin, R.; Yang, S. Y.; Li, Q. M.; Zhang, S. D.; Liu, H.; Han, J.; Liu, C. T.; Shen, C. Y. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908.

[14]

Yang, R. L.; Song, H. Z.; Zhou, Z.; Yang, S. D.; Tang, X.; He, J. K.; Liu, S. Y.; Zeng, Z. P.; Yang, B. R.; Gui, X. C. Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 2023, 15, 8345–8354.

[15]

Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.

[16]

Ma, Y. J.; Zhi, L. J. Functionalized graphene materials: Definition, classification, and preparation strategies. Acta Phys. -Chim. Sin. 2022, 38, 2101004.

[17]

Brakat, A.; Zhu, H. W. Nanocellulose-graphene hybrids: Advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 2021, 13, 94.

[18]

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

[19]

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

[20]

Qi, C. Z.; Wu, X. Y.; Liu, J.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 2023, 135, 213–220.

[21]

Zhang, B. P.; Wong, P. W.; Guo, J. X.; Zhou, Y. S.; Wang, Y.; Sun, J. W.; Jiang, M. N.; Wang, Z. K.; An, A. K. Transforming Ti3C2Tx MXene's intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat. Commun. 2022, 13, 3315.

[22]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[23]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[24]

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

[25]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[26]

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

[27]

Zang, X. B.; Wang, J. L.; Qin, Y. J.; Wang, T.; He, C. P.; Shao, Q. G.; Zhu, H. W.; Cao, N. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: From controlled preparation to composite structure construction. Nano-Micro Lett. 2020, 12, 77.

[28]

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2TX MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

[29]

Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidiu, M.; Gogotsi, Y.; Grey, C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 2016, 18, 5099–5102.

[30]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

[31]

Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.

[32]

Wang, B. L.; Lai, X. J.; Li, H. Q.; Jiang, C. C.; Gao, J. F.; Zeng, X. R. Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 2021, 13, 23020–23029.

[33]

Xu, T.; Song, Q.; Liu, K.; Liu, H. Y.; Pan, J. J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y. X.; Si, C. L. et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 2023, 15, 98.

[34]

Zang, X. B.; Li, X.; Zhu, M.; Li, X. M.; Zhen, Z.; He, Y. J.; Wang, K. L.; Wei, J. Q.; Kang, F. Y.; Zhu, H. W. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015, 7, 7318–7322.

[35]

Ramirez, F. C. R.; Ramakrishnan, P.; Flores-Payag, Z. P.; Shanmugam, S.; Binag, C. A. Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. Synthetic. Met. 2017, 230, 65–72.

[36]

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

[37]

Liu, F. W.; Xie, L. Y.; Wang, L.; Chen, W.; Wei, W.; Chen, X.; Luo, S. J.; Dong, L.; Dai, Q. L.; Huang, Y. et al. Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexibility and stability. Nano-Micro Lett. 2020, 12, 17.

[38]

Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

[39]

Zhou, T.; Wu, C.; Wang, Y.; Tomsia, A. P.; Li, M.; Saiz, E.; Fang, S.; Baughman, R. H.; Jiang L.; Cheng, Q. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

[40]

Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720.

Nano Research
Pages 12753-12761
Cite this article:
Li X, Sun X, Zhang J, et al. A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage. Nano Research, 2023, 16(11): 12753-12761. https://doi.org/10.1007/s12274-023-6150-8
Topics:

869

Views

10

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 01 July 2023
Revised: 25 August 2023
Accepted: 01 September 2023
Published: 30 September 2023
© Tsinghua University Press 2023
Return