AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pb induced dislocation defects of PtCo systems: Strain-triggered oxygen reduction reaction for PEMFC

Chun Jin1,2Qiheng Wang1,2Jingjun Liu1,2( )
Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Taking advantage of the significant difference in atomic radius, Pb with a larger atomic radius is incorporated to induce dislocation defects in the PtCo systems. Moderate dislocation density tunes the strain effect to facilitate efficient oxygen reduction reaction catalysis in proton exchange membrane fuel cells.

Abstract

Design and development of advanced electrocatalysts with high performance and low Pt consumption are crucial for reducing the kinetic energy barrier of the cathode oxygen reduction reaction (ORR) and improving the efficiency of proton exchange membrane fuel cells (PEMFC). In this study, we demonstrate a Pb-modulated PtCo system for efficient ORR, in which the inclusion of Pb in ternary alloys induces dislocation defects due to the significant difference in atomic radius. Dislocation-PtCoPb was confirmed to exhibit significantly higher ORR activity and stability in acidic ORR. In practical PEMFC applications, it outperforms the corresponding commercial Pt/C with a mass activity of 0.58 A·mgPt−1, making it a promising alternative to state-of-the-art Pt-based catalysts. The combination of experimental results and density functional theory (DFT) calculations offers valuable atomic-level insights into the dislocation structures. Pb with a larger atomic radius is located in the lattice stretching region below the dislocation slip plane, forming a structure similar to a Cottrell atmosphere, which reduces the dislocation energy and puts the system in a lower energy state. The Cottrell atmosphere pins the dislocation structure and stabilizes the ternary alloy. By adjusting the amount of added Pb, a moderate level of dislocation density induces a tuned strain effect, thereby enhancing the electrocatalytic mechanism by optimizing the electronic structure of the alloy surface and the adsorption and desorption of oxygen species. This work provides valuable insights into the design and development of lattice dislocation defect structures to trigger strain effects for improving ORR performance.

Electronic Supplementary Material

Download File(s)
12274_2023_6151_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Ahn, C. Y.; Park, J. E.; Kim, S.; Kim, O. H.; Hwang, W.; Her, M.; Kang, S. Y.; Park, S. B.; Kwon, O. J.; Park, H. S. et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 2021, 121, 15075–15140.

[2]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[3]

Zhang, J. W.; Yuan, Y. L.; Gao, L.; Zeng, G. M.; Li, M. F.; Huang, H. W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies. Adv. Mater. 2021, 33, 2006494.

[4]

Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

[5]

Yao, Z. Y.; Yuan, Y. L.; Cheng, T.; Gao, L.; Sun, T. L.; Lu, Y. F.; Zhou, Y. G.; Galindo, P. L.; Yang, Z. L.; Xu, L. et al. Anomalous size effect of Pt ultrathin nanowires on oxygen reduction reaction. Nano Lett. 2021, 21, 9354–9360.

[6]

Wang, D. Q.; Zhang, Y. P.; Li, Z. L.; Wu, Z. Y.; Hata, S.; Gao, F.; Shiraishi, Y.; Du, Y. K. One-pot synthesis of PdPtAg porous nanospheres with enhanced electrocatalytic activity toward polyalcohol electrooxidation. J. Colloid Interface Sci. 2023, 636, 602–609.

[7]
Chen, Z. M.; Wang, Q. H.; Jin, C.; Liu, J. J. Trace tungsten microalloying PtCuCo medium entropy alloys: Substructure reconstruction-triggered high-performance for PEMFC. Small, in press, https://doi.org/10.1002/smll.202302895.
[8]

Li, X. J.; Xi, J. Y.; Tang, L.; Wang, H. Y.; Liu, Y. F.; Min, C. G.; Gao, S. X.; Liu, F.; Yang, X. K. A high-performance and anti-sulfur poisoning oxygen reduction reaction catalysts derive from molybdenum-doping on PtCo alloy nanoparticles surface. Electrochim. Acta 2023, 462, 142658.

[9]

Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

[10]

Zhang, Y. P.; Zheng, X. J.; Guo, X. M.; Zhang, J. H.; Yuan, A. H.; Du, Y. K.; Gao, F. Design of modified MOFs electrocatalysts for water splitting: High current density operation and long-term stability. Appl. Catal. B: Environ. 2023, 336, 122891.

[11]

Bulatov, V. V.; Hsiung, L. L.; Tang, M. J.; Arsenlis, A.; Bartelt, M. C.; Cai, W.; Florando, J. N.; Hiratani, M.; Rhee, M.; Hommes, G. et al. D. Dislocation multi-junctions and strain hardening. Nature 2006, 440, 1174–1178.

[12]

Xiao, Z. H.; Xie, C.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225.

[13]

Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.

[14]

Li, X. M.; Hu, Q. Y.; Wang, H. Y.; Chen, M.; Hao, X. G.; Ma, Y. F.; Liu, J.; Tang, K. Y.; Abudula, A.; Guan, G. Q. Charge induced crystal distortion and morphology remodeling: Formation of Mn-CoP nanowire@Mn-CoOOH nanosheet electrocatalyst with rich edge dislocation defects. Appl. Catal. B: Environ. 2021, 292, 120172.

[15]

Mariano, R. G.; Kang, M.; Wahab, O. J.; McPherson, I. J.; Rabinowitz, J. A.; Unwin, P. R.; Kanan, M. W. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 2021, 20, 1000–1006.

[16]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[17]

Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

[18]

Meng, T.; Sun, P. P.; Yang, F.; Zhu, J.; Mao, B. G.; Zheng, L. R.; Cao, M. H. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2214089119.

[19]

Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

[20]

Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359–371.

[21]

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

[22]

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

[23]

Bu, L. Z.; Shao, Q.; E, B.; Guo, J.; Yao, J. L.; Huang, X. Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576–9582.

[24]

Cheng, N.; Zhang, L.; Jiang, H.; Zhou, Y. J.; Yu, S. W.; Chen, L. Y.; Jiang, H. B.; Li, C. Z. Locally-ordered PtNiPb ternary nano-pompons as efficient bifunctional oxygen reduction and methanol oxidation catalysts. Nanoscale 2019, 11, 16945–16953.

[25]

Mahmood, A.; He, D. Q.; Zhao, B. L.; Talib, S. H.; Cheong, W. C.; Nan, Z. A.; He, Y.; Han, D. X.; Wang, X.; Niu, L. Dimensional-transformation of ternary-alloy through the manipulation of reduction kinetics. Adv. Funct. Mater. 2022, 32, 2202639.

[26]

Cottrell, A. H.; Bilby, B. A. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A 1949, 62, 49–62.

[27]

Yasuhara, A.; Sannomiya, T. Atomically localized ordered phase and segregation at grain boundaries in Au-Ag-Cu ternary alloy nanoparticles. J. Phys. Chem. C 2022, 126, 1160–1167.

[28]

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

[29]

Zhao, W. Y.; Chi, B.; Liang, L. C.; Yang, P. F.; Zhang, W.; Ge, X.; Wang, L. M.; Cui, Z. M.; Liao, S. J. Optimizing the electronic structure of ordered Pt-Co-Ti ternary intermetallic catalyst to boost acidic oxygen reduction. ACS Catal. 2022, 12, 7571–7578.

[30]

Jin, C.; Lou, Y. W.; Liu, J. J.; Wang, F. Crystal orientation in Pt-based alloys induced by W(CO)6: Driving oxygen electroreduction catalysis. ACS Appl. Mater. Interfaces 2021, 13, 45406–45415.

[31]

Cheng, H.; Gui, R. J.; Yu, H.; Wang, C.; Liu, S.; Liu, H. F.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S. et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2104026118.

[32]

Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

[33]

Liao, Y. F.; Peng, L. S.; Wu, C. L.; Yan, Y. G.; Xie, H. J.; Chen, Y. G.; Wang, Y. Size and near-surface engineering in weak-oxidative confined space to fabricate 4 nm L10-PtCo@Pt nanoparticles for oxygen reduction reaction. Nano Res. 2023, 16, 6622–6631.

[34]

Shen, X. C.; Dai, S.; Pan, Y. B.; Yao, L. B.; Yang, J. L.; Pan, X. Q.; Zeng, J.; Peng, Z. M. Tuning electronic structure and lattice diffusion barrier of ternary Pt-In-Ni for both improved activity and stability properties in oxygen reduction electrocatalysis. ACS Catal. 2019, 9, 11431–11437.

[35]

Yang, Z. J.; Yang, H. Z.; Shang, L.; Zhang, T. R. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202113278.

[36]

Huang, S. D.; Lu, S. L.; Gong, S.; Zhang, Q. J.; Duan, F.; Zhu, H.; Gu, H. W.; Dong, W. F.; Du, M. L. Sublayer stable Fe dopant in porous Pd metallene boosts oxygen reduction reaction. ACS Nano 2022, 16, 522–532.

[37]

Yu, H. J.; Zhou, T. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12027–12031.

[38]

Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[39]

Guo, W. X.; Gao, X. P.; Zhu, M. Z.; Xu, C. X.; Zhu, X. R.; Zhao, X. Y.; Sun, R. B.; Xue, Z. G.; Song, J.; Tian, L. et al. A closely packed Pt1.5Ni1−x/Ni-N-C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 2023, 16, 148–156.

[40]

Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

[41]

Ehelebe, K.; Ashraf, T.; Hager, S.; Seeberger, D.; Thiele, S.; Cherevko, S. Fuel cell catalyst layer evaluation using a gas diffusion electrode half-cell: Oxygen reduction reaction on Fe-N-C in alkaline media. Electrochem. Commun. 2020, 116, 106761.

[42]

Huang, L.; Wei, M.; Qi, R. J.; Dong, C. L.; Dang, D.; Yang, C. C.; Xia, C. F.; Chen, C.; Zaman, S.; Li, F. M. et al. An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction. Nat. Commun. 2022, 13, 6703.

[43]

Zhu, W. K.; Pei, Y. B.; Douglin, J. C.; Zhang, J. F.; Zhao, H. Y.; Xue, J. D.; Wang, Q. F.; Li, R.; Qin, Y. Z.; Yin, Y. et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 299, 120656.

[44]

Li, S. Y.; Tang, X. W.; Jia, H. L.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Lin, X.; Qiu, H. J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171.

[45]

Zhan, C. H.; Sun, H. R.; Lü, L. Z.; Bu, L. Z.; Li, L. G.; Liu, Y. H.; Yang, T.; Liu, W.; Huang, X. Q. Zinc intercalated lattice expansion of ultrafine platinum-nickel oxygen reduction catalyst for PEMFC. Adv. Funct. Mater. 2023, 33, 2212442.

[46]

Qin, J. Y.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Yao, L. B.; Xin, H. L. Pt-Fe-Cu ordered intermetallics encapsulated with N-doped carbon as high-performance catalysts for oxygen reduction reaction. ACS Sustainable Chem. Eng. 2022, 10, 14024–14033.

[47]

Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

[48]

Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G. H.; Miller, J. T. Identification of a Pt3Co surface intermetallic alloy in Pt-Co propane dehydrogenation catalysts. ACS Catal. 2019, 9, 5231–5244.

[49]

Zheng, Y. Y.; Petersen, A. S.; Wan, H.; Hübner, R.; Zhang, J. W.; Wang, J. L.; Qi, H. Y.; Ye, Y. H.; Liang, C. L.; Yang, J. et al. Scalable and controllable synthesis of Pt-Ni bunched-nanocages aerogels as efficient electrocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2023, 13, 2204257.

[50]

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

[51]

Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.

[52]

Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

[53]

Wang, Y. H.; Gong, H.; Wang, Y. Y.; Gao, L. Z. Lattice-dislocated Bi nanosheets for electrocatalytic reduction of carbon dioxide to formate over a wide potential window. J. Colloid Interface Sci. 2022, 611, 246–254.

[54]

Calle-Vallejo, F.; Bandarenka, A. S. Enabling generalized coordination numbers to describe strain effects. ChemSusChem 2018, 11, 1824–1828.

[55]

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.

[56]

Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360–20376.

[57]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[58]

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

[59]

Ou, L. H.; Yang, F.; Liu, Y. W.; Chen, S. L. First-principle study of the adsorption and dissociation of O2 on Pt (111) in acidic media. J. Phys. Chem. C 2009, 113, 20657–20665.

[60]

Liu, B. W.; Feng, R. H.; Busch, M.; Wang, S. H.; Wu, H. F.; Liu, P.; Gu, J. J.; Bahadoran, A.; Matsumura, D.; Tsuji, T. et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 2022, 16, 14121–14133.

[61]

Wang, Y.; Yin, K. B.; Zhang, J.; Si, C. H.; Chen, X. T.; Lv, L. F.; Ma, W. S.; Gao, H.; Zhang, Z. H. A nanoporous PtCuTi alloy with a low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen reduction. J. Mater. Chem. A 2016, 4, 14657–14668.

[62]

Tao, H. B.; Zhang, J. M.; Chen, J. Z.; Zhang, L. P.; Xu, Y. H.; Chen, J. G.; Liu, B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 2019, 141, 13803–13811.

Nano Research
Pages 2462-2472
Cite this article:
Jin C, Wang Q, Liu J. Pb induced dislocation defects of PtCo systems: Strain-triggered oxygen reduction reaction for PEMFC. Nano Research, 2024, 17(4): 2462-2472. https://doi.org/10.1007/s12274-023-6151-7
Topics:

604

Views

5

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 06 July 2023
Revised: 30 August 2023
Accepted: 01 September 2023
Published: 28 September 2023
© Tsinghua University Press 2023
Return