Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Partial oxidation of methane into primary oxidation products with high value remains a challenge. In this work, photocatalytic oxidation of methane (CH4) with high methyl hydroperoxide (CH3OOH) selectivity is achieved using pure titanium oxide (TiO2) without any cocatalyst at room temperature and atmospheric pressure. The CH3OOH production rate can reach up to 2050 ± 88 μmol·g−1·h−1 at pH ≈ 7.0 with 100% selectivity in the liquid product. The stable reaction cycle can reach more than 30 times. This low-cost system achieves superior CH4 conversion activity and selectivity compared with similar work. The energy of hydrogen peroxide (H2O2) to adsorbed hydroperoxyl radical (*OOH) has a significantly lower reaction energy than conversion to adsorbed hydroxyl radical (*OH) on the (210) surface of the TiO2. The *OOH preferentially combines with methyl radical (·CH3) to form the most energetically favorable CH3OOH. The mild oxidative environment of this system prevents the reduction of CH3OOH to CH3OH or over-oxidation of CH4, which ensures the final CH3OOH with high selectivity and stability. This work provided a low-cost but highly efficient method to achieve partial oxidation with superior selectivity, i.e., to convert CH4 into high-value chemicals.
Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.
Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296–2325.
Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.
Sastre, F.; Fornés, V.; Corma, A.; García, H. Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites. J. Am. Chem. Soc. 2011, 133, 17257–17261.
Hewitt, C. N.; Kok, G. L.; Fall, R. Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. Nature 1990, 344, 56–58.
Madronich, S.; Calvert, J. G. Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res. Atmos. 1990, 95, 5697–5715.
Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. Atmos. Environ. Part A: Gen. Top. 1992, 26, 1805–1961.
He, S. Z.; Chen, Z. M.; Zhang, X.; Zhao, Y.; Huang, D. M.; Zhao, J. N.; Zhu, T.; Hu, M.; Zeng, L. M. Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations. J. Geophys. Res. Atmos. 2010, 115, D17307.
Utembe, S. R.; Cooke, M. C.; Archibald, A. T.; Shallcross, D. E.; Derwent, R. G.; Jenkin, M. E. Simulating secondary organic aerosol in a 3-D Lagrangian chemistry transport model using the reduced common representative intermediates mechanism (CRI v2-R5). Atmos. Environ. 2011, 45, 1604–1614.
Lin, G.; Penner, J. E.; Sillman, S.; Taraborrelli, D.; Lelieveld, J. Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides. Atmos. Chem. Phys. 2012, 12, 4743–4774.
Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on Co catalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.
Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.
Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.
Ab Rahim, M. H.; Forde, M. M.; Hammond, C.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J.; Hutchings, G. J. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Top. Catal. 2013, 56, 1843–1857.
Chen, J. J.; Wang, S. K.; Peres, L.; Collière, V.; Philippot, K.; Lecante, P.; Chen, Y. Q.; Yan, N. Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catal. Sci. Technol. 2021, 11, 3493–3500.
Bai, S. X.; Liu, F. F.; Huang, B. L.; Li, F.; Lin, H. P.; Wu, T.; Sun, M. Z.; Wu, J. B.; Shao, Q.; Xu, Y. et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 2020, 11, 954.
Shen, Q. K.; Cao, C. Y.; Huang, R. K.; Zhu, L.; Zhou, X.; Zhang, Q. H.; Gu, L.; Song, W. G. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem., Int. Ed. 2020, 59, 1216–1219.
Ming, L. Y.; Wang, C. L.; Hu, Y. H. CePMo12O40/TiO2 catalysts for photocatalytic oxidation of methane to value-added organic oxygenates. Int. J. Energy Res. 2021, 45, 12996–13006.
Tian, Y. D.; Piao, L.; Chen, X. B. Research progress on the photocatalytic activation of methane to methanol. Green Chem. 2021, 23, 3526–3541.
Shah, M. S. A. S.; Oh, C.; Park, H.; Hwang, Y. J.; Ma, M.; Park, J. H. Catalytic oxidation of methane to oxygenated products: Recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv. Sci. 2020, 7, 2001946.
Zheng, K.; Wu, Y.; Hu, Z. X.; Jiao, X. C.; Li, L.; Zhao, Y.; Wang, S. M.; Zhu, S.; Liu, W. X.; Yan, W. S. et al. Selective CH4 partial photooxidation by positively charged metal clusters anchored on carbon aerogel under mild conditions. Nano Lett. 2021, 21, 10368–10376.
Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.
Sun, S. M.; Dummer, N. F.; Bere, T.; Barnes, A. J.; Shaw, G.; Douthwaite, M.; Pattisson, S.; Lewis, R. J.; Richards, N.; Morgan, D. J. et al. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catal. Sci. Technol. 2022, 12, 3727–3736.
Cai, X. J.; Fang, S. Y.; Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2—What is the role of each component in the system. J. Mater. Chem. A 2021, 9, 10796–10802.
Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.
Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.
Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.
Cao, S.; Chen, Y.; Wang, C. J.; He, P.; Fu, W. F. Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem. Commun. 2014, 50, 10427–10429.
Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89–111.
Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.
Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.
Li, S. J.; Cai, M. J.; Liu, Y. P.; Wang, C. C.; Lv, K. L.; Chen, X. B. S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 2022, 43, 2652–2664.
Liu, M. P.; Xia, Y.; Zhao, W.; Jiang, R. Y.; Fu, X.; Zimmerle, B.; Tian, L. H.; Chen, X. B. Modulating oxygen vacancy concentration on Bi4V2O11 nanorods for synergistic photo-driven plastic waste oxidation and CO2 reduction. J. Mater. Chem. A 2023, 11, 12770–12776.
Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 1280–1284.
Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.
Taniguchi, H.; Madden, K. P. An in situ radiolysis time-resolved ESR study of the kinetics of spin trapping by 5,5-dimethyl-1-pyrroline-N-oxide. J. Am. Chem. Soc. 1999, 121, 11875–11879.
Goldstein, S.; Rosen, G. M.; Russo, A.; Samuni, A. Kinetics of spin trapping superoxide, hydroxyl, and aliphatic radicals by cyclic nitrones. J. Phys. Chem. A 2004, 108, 6679–6685.
Finkelstein, E.; Rosen, G. M.; Rauckman, E. J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 1980, 102, 4994–4999.
Lemercier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 1995, 321, 31–39.
Villa, K.; Murcia-López, S.; Andreu, T.; Ramon Morante, J. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl. Catal. B: Environ. 2015, 163, 150–155.