AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules

Junru Yao1,2Jintang Zhou1,2( )Feng Yang1,2Guiyu Peng1,2Yijie Liu1,2Zhengjun Yao1,2( )Fan Wu3( )Haibo Zeng3( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Show Author Information

Graphical Abstract

The hybrid MXene aerogels feature electromagnetic interference shielding, infrared stealth, and thermal management. The hybrid MXene aerogels are suitable for various application scenarios such as personal, building, and military equipment.

Abstract

The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment. Here, we developed asymmetric MXene/aramid nanofibers/polyimides (AMAP) aerogels with different modules using an integrated molding process. Cleverly asymmetric modules (layered MXene/aramid nanofibers section and porous MXene/aramid nanofibers/polyimides section) interactions are beneficial for enhanced performances, resulting in low reflection electromagnetic interference (EMI) shielding (specific shielding effectiveness of 2483 (dB·cm3)/g and a low R-value of 0.0138), high-efficiency infrared radiation (IR) stealth (ultra-low thermal conductivity of 0.045 W/(m·K) and IR emissivity of 0.32 at 3–5 μm and 0.28 at 8–14 μm), and excellent thermal management performances of insulated Joule heating. Furthermore, these multifunctional AMAP aerogels are suitable for various application scenarios such as personal and building protection against electromagnetic pollution and cold, as well as military equipment protection against infrared detection and EMI.

Electronic Supplementary Material

Download File(s)
12274_2023_6154_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Ma, M.; Tao, W. T.; Liao, X. J.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 2023, 452, 139471.

[2]

Guo, Z. Z.; Ren, P. G.; Yang, F.; Wu, T.; Zhang, L. X.; Chen, Z. Y.; Huang, S. Q.; Ren, F. MOF-Derived Co/C and MXene co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2023, 15, 7308–7318.

[3]

Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 2022, 10, 6700–6711.

[4]

Du, Y.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

[5]

Zhao, Z. H.; Lan, D.; Zhang, L. M.; Wu, H. J. A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 2022, 32, 2111045.

[6]

Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

[7]

Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

[8]

Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

[9]

Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “Metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

[10]

Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

[11]

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

[12]

He, P.; Wang, X. X.; Cai, Y. Z.; Shu, J. C.; Zhao, Q. L.; Yuan, J.; Cao, M. S. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 2019, 11, 6080–6088.

[13]

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

[14]

Wang, Y.; Wang, W.; Ding, X. D.; Yu, D. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chem. Eng. J. 2020, 380, 122553.

[15]

He, J.; Han, M. J.; Wen, K.; Liu, C. J.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

[16]

Guo, Z. Z.; Ren, P. G.; Wang, J.; Hou, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

[17]

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

[18]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh.) 2022, 9, 2105553.

[19]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[20]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[21]

Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

[22]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. (Weinh.) 2022, 9, 2204165.

[23]

Wang, N. N.; Wang, H.; Wang, Y. Y.; Wei, Y. H.; Si, J. Y.; Yuen, A. C. Y.; Xie, J. S.; Yu, B.; Zhu, S. E.; Lu, H. D. et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 40512–40523.

[24]

Yang, F.; Yao, J. R.; Jin, L. Q.; Huyan, W. J.; Zhou, J. T.; Yao, Z. J.; Liu, P. J.; Tao, X. W. Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B: Eng. 2022, 243, 110161.

[25]

Yao, J. R.; Zhang, L.; Yang, F.; Jiao, Z. B.; Tao, X. W.; Yao, Z. J.; Zheng, Y. M.; Zhou, J. T. Superhydrophobic Ti3C2Tx MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment. Chem. Eng. J. 2022, 446, 136945.

[26]

Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.

[27]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

[28]

Yang, F.; Yao, J. R.; Shen, Z.; Ma, Q.; Peng, G. Y.; Zhou, J. T.; Yao, Z. J.; Tao, X. W. Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature. J. Colloid Interface Sci. 2023, 638, 843–854.

[29]

Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B: Eng. 2021, 217, 108853.

[30]

Zhao, H. T.; Wang, Q. J.; Ma, H. L.; Zhao, Y.; Li, L.; Li, P. B.; Yan, J. F.; Yun, J. N.; Zhao, W.; Zhang, H. et al. Hollow spherical NiFe-MOF derivative and N-doped rGO composites towards the tunable wideband electromagnetic wave absorption: Experimental and theoretical study. Carbon 2023, 201, 347–361.

[31]

Zhang, Z. L.; He, Y. Y.; Lv, Y. Y.; Zhang, L.; Chen, X. Q.; Wu, Z.; Zou, Y. H. Effect of surface structure and composition on the electromagnetic properties of Ti3C2Tx MXenes for highly efficient electromagnetic wave absorption. J. Phys. Chem. C 2020, 124, 19666–19674.

[32]

Gao, Z. G.; Lan, D.; Zhang, L. M.; Wu, H. J. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2106677.

[33]

Su, J. B.; Zhou, W. C.; Liu, Y.; Qing, Y. C.; Luo, F.; Zhu, D. M. High-temperature dielectric and microwave absorption property of plasma sprayed Ti3SiC2/cordierite coatings. J. Mater. Sci. Mater. Electron. 2016, 27, 2460–2466.

[34]

Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 63.

[35]

Hu, J. H.; Hu, Y.; Ye, Y. H.; Shen, R. Q. Unique applications of carbon materials in infrared stealth: A review. Chem. Eng. J. 2023, 452, 139147.

[36]

Xu, Z. J.; Ding, X.; Li, S. K.; Huang, F. Z.; Wang, B. J.; Wang, S. P.; Zhang, X.; Liu, F. H.; Zhang, H. Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 2022, 14, 40396–40407.

[37]

Feng, L. L.; Liu, Y. M.; Yao, L.; Sun, R.; He, J. H. Infrared stealth and multi-band compatible stealth materials. Progr. Chem. 2021, 33, 1044–1058.

[38]

Feng, S. Y.; Yi, Y.; Chen, B. X.; Deng, P. C.; Zhou, Z. H.; Lu, C. H. Rheology-guided assembly of a highly aligned MXene/Cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 36060–36070.

[39]

Li, L.; Shi, M. K.; Liu, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 2021, 31, 2101381.

[40]

Zhang, Y. X.; Li, L.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. Mater. Horiz. 2023, 10, 235–247.

[41]

Shen, M. M.; Ni, J. H.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Low infrared emitter from Ti3C2T MXene towards highly-efficient electric/solar and passive radiative heating. J. Mater. Sci. Technol. 2023, 133, 32–40.

[42]

Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 6036–6037.

[43]

Sun, Y.; Ding, R. N.; Hong, S. Y.; Lee, J.; Seo, Y. K.; Nam, J. D.; Suhr, J. MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 2021, 410, 128348.

Nano Research
Pages 3359-3368
Cite this article:
Yao J, Zhou J, Yang F, et al. Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules. Nano Research, 2024, 17(4): 3359-3368. https://doi.org/10.1007/s12274-023-6154-4
Topics:

551

Views

11

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 20 July 2023
Revised: 27 August 2023
Accepted: 01 September 2023
Published: 30 September 2023
© Tsinghua University Press 2023
Return