AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A hybrid nickel/iron-pyromellitic acid electrocatalyst for oxygen evolution reaction

Guoqi Li1Lin Li1,2( )Wenlong Li3Fusheng Li3Chunze Yuan1,2Nian Zhang4Hui Zhang4Tsu-Chien Weng1,2( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
State Key Lab of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Show Author Information

Graphical Abstract

In this study, we present a novel electrocatalyst based on nickel/iron-pyromellitic acid (NiFe-PMA) prepared by the electrochemical deposition method. Our catalyst exhibited a low overpotential of 188 mV at a current density of 10 mA·cm−2, a Tafel slope of 28.2 mV·dec−1, and long-term stability for 30 days with a current of 50 mA·cm−2.

Abstract

The migration of protons during the oxygen evolution reaction (OER) is a key factor that affects the performance of OER catalysts. To enhance proton transportation, we designed a catalyst based on nickel/iron-pyromellitic acid (NiFe-PMA) prepared by the electrochemical deposition method. This catalyst exhibited a low overpotential of 188 mV at a current density of 10 mA·cm−2, a Tafel slope of 28.2 mV·dec−1, and long-term stability for 30 days with a current of 50 mA·cm−2. We characterized the NiFe-PMA catalyst using various techniques, including Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectrometry (ICP-OES). Our results showed that NiFe-PMA contains nickel, iron atoms, and both coordinated and uncoordinated carboxylate groups. Additionally, XPS data confirmed that carboxylate ligands could adjust the outer electronic structure of metal ions, resulting in the high valence state of Ni in NiFe-PMA. The result of XAS indicated that the nickel atoms present in the catalyst might be easier to maintain a higher chemical state. Further investigations using kinetic isotope effects (KIEs) and proton inventory revealed that the uncoordinated carboxylic protons played a crucial role in receiving protons during the OER, which promoted the proton transfer of the rate-determining step of the OER. Our novel electrocatalysts provide a new strategy for designing more active and cost-effective catalysts for the OER.

Electronic Supplementary Material

Download File(s)
12274_2023_6155_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[2]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[3]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

[4]

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

[5]

Wang, P. C.; Wang, B. G. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 59593–59617.

[6]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[7]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[8]

Rana, M.; Mondal, S.; Sahoo, L.; Chatterjee, K.; Karthik, P. E.; Gautam, U. K. Emerging materials in heterogeneous electrocatalysis involving oxygen for energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 33737–33767.

[9]

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

[10]

Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B. Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 2014, 114, 11863–12001.

[11]

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

[12]

Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

[13]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[14]

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

[15]

Chen, C.; Zhang, P. L.; Wang, M.; Zheng, D. H.; Chen, J. C.; Li, F. S.; Wu, X. J.; Fan, K.; Sun, L. C. Boosting electrocatalytic water oxidation by creating defects and lattice-oxygen active sites on Ni-Fe nanosheets. ChemSusChem 2020, 13, 5067–5072.

[16]

Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

[17]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[18]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[19]

Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.

[20]

Sirisomboonchai, S.; Li, S. S.; Yoshida, A.; Li, X. M.; Samart, C.; Abudula, A.; Guan, G. Q. Fabrication of NiO microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2327–2334.

[21]

Kashale, A. A.; Yi, C. H.; Cheng, K. Y.; Guo, J. S.; Pan, Y. H.; Chen, I. W. P. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions. ACS Appl. Energy Mater. 2020, 3, 10831–10840.

[22]

Zhang, H. T.; Guo, Y. H.; Xiao, Y.; Du, H. Y.; Zhang, M. T. Heterobimetallic NiFe cooperative molecular water oxidation catalyst. Angew. Chem., Int. Ed. 2023, 62, e202218859.

[23]

Qian, Y.; Zhang, F.; Qiu, L. S.; Han, W. W.; Zeng, Z. X.; Lei, L. C.; He, Y.; Li, P.; Zhang, X. W. Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density. Nano Res. 2023, 16, 8953–8960.

[24]

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

[25]

Wen, Q. L.; Wang, S. Z.; Wang, R. W.; Huang, D. J.; Fang, J. K.; Liu, Y. W.; Zhai, T. Y. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Res. 2023, 16, 2286–2293.

[26]

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

[27]

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

[28]

Tyburski, R.; Liu, T. F.; Glover, S. D.; Hammarstrom, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 2021, 143, 560–576.

[29]

Zhang, M. T.; Irebo, T.; Johansson, O.; Hammarstrom, L. Proton-coupled electron transfer from tyrosine: A strong rate dependence on intramolecular proton transfer distance. J. Am. Chem. Soc. 2011, 133, 13224–13227.

[30]

Li, W. L.; Li, F. S.; Zhao, Y. L.; Liu, C.; Li, Y. Z.; Yang, H.; Fan, K.; Zhang, P. L.; Shan, Y.; Sun, L. C. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion. Sci. China Chem. 2022, 65, 382–390.

[31]

Hammes-Schiffer, S. Proton-coupled electron transfer: Moving together and charging forward. J. Am. Chem. Soc. 2015, 137, 8860–8871.

[32]

Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 2010, 110, 6961–7001.

[33]

Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 2012, 112, 4016–4093.

[34]

Wang, Y. F.; Zhang, M. T. Proton-coupled electron-transfer reduction of dioxygen: The importance of precursor complex formation between electron donor and proton donor. J. Am. Chem. Soc. 2022, 144, 12459–12468.

[35]

Lee, J. S. M.; Otake, K. I.; Kitagawa, S. Transport properties in porous coordination polymers. Coord. Chem. Rev. 2020, 421, 213447.

[36]

Guo, Z. C.; Shi, Z. Q.; Wang, X. Y.; Li, Z. F.; Li, G. Proton conductive covalent organic frameworks. Coord. Chem. Rev. 2020, 422, 213465.

[37]

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Ren, Q.; Wang, Y.; Li, G. R. Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 18129–18137.

[38]

Liu, W. X.; Zheng, D.; Deng, T. Q.; Chen, Q. L.; Zhu, C. Z.; Pei, C. J.; Li, H.; Wu, F. F.; Shi, W. H.; Yang, S. W. et al. Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angew. Chem., Int. Ed. 2021, 60, 10614–10619.

[39]

Ma, F. X.; Lyu, F. C.; Diao, Y. X.; Zhou, B. B.; Wu, J. H.; Kang, F. W.; Li, Z. B.; Xiao, X. F.; Wang, P.; Lu, J. et al. Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Res. 2022, 15, 2887–2894.

[40]

Das, B.; Rahaman, A.; Shatskiy, A.; Verho, O.; Kärkäs, M. D.; Åkermark, B. The impact of ligand carboxylates on electrocatalyzed water oxidation. Acc. Chem. Res. 2021, 54, 3326–3337.

[41]

Ren, G. X.; Zhang, N.; Feng, X. F.; Zhang, H.; Yu, P. F.; Zheng, S.; Zhou, D.; Tian, Z. W.; Liu, X. S. Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai Synchrotron Radiation Facility. Chin. Phys. B 2020, 29, 016101.

[42]

Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1−xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2016, 138, 313–318.

[43]

Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mössbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090–15093.

[44]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[45]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

[46]

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

[47]

Hunter, B. M.; Winkler, J. R.; Gray, H. B. Iron is the active site in nickel/iron water oxidation electrocatalysts. Molecules 2018, 23, 903.

[48]

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

[49]

Son, Y. J.; Kim, S.; Leung, V.; Kawashima, K.; Noh, J.; Kim, K.; Marquez, R. A.; Carrasco-Jaim, O. A.; Smith, L. A.; Celio, H. et al. Effects of electrochemical conditioning on nickel-based oxygen evolution electrocatalysts. ACS Catal. 2022, 12, 10384–10399.

[50]

Mahmood, A.; Yu, Q. M.; Luo, Y. T.; Zhang, Z. Y.; Zhang, C.; Qiu, L.; Liu, B. L. Controllable structure reconstruction of nickel-iron compounds toward highly efficient oxygen evolution. Nanoscale 2020, 12, 10751–10759.

[51]

Zhou, Y.; Yan, D. F.; Gu, Q. F.; Zhu, S. H.; Wang, L.; Peng, H. G.; Zhao, Y. Implanting cation vacancies in Ni-Fe LDHs for efficient oxygen evolution reactions of lithium-oxygen batteries. Appl. Catal. B: Environ. 2021, 285, 119792.

[52]

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

[53]

Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.

[54]

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

[55]

Wang, H.; Yin, F. X.; Li, G. R.; Chen, B. H.; Wang, Z. Q. Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int. J. Hydrog. Energy 2014, 39, 16179–16186.

[56]

Lee, M. W.; Kim, M. S.; Kim, K. Infrared and Raman spectroscopic study of terephthalic acid adsorbed on silver surfaces. J. Mol. Struct. 1997, 415, 93–100.

[57]

Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.

[58]

Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

[59]

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

[60]

Liu, N.; Huang, W. Y.; Zhang, X. D.; Tang, L.; Wang, L.; Wang, Y. X.; Wu, M. H. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B: Environ. 2018, 221, 119–128.

[61]

Mansour, A. N. Characterization of NiO by XPS. Surf. Sci. Spectra 1994, 3, 231–238.

[62]

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

[63]

Chen, S.; Zheng, Z. C.; Li, Q. Y.; Wan, H.; Chen, G.; Zhang, N.; Liu, X. H.; Ma, R. Z. Boosting electrocatalytic water oxidation of NiFe layered double hydroxide via the synergy of 3d–4f electron interaction and citrate intercalation. J. Mater. Chem. A 2023, 11, 1944–1953.

[64]

Qiao, C.; Hao, Y. Y.; Cao, C. B.; Zhang, J. T. Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: Recent progress and perspectives. Nanoscale 2023, 15, 450–460.

[65]

Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

[66]

Li, L.; Cao, X. J.; Huo, J. J.; Qu, J. P.; Chen, W. H.; Liu, C. T.; Zhao, Y. F.; Liu, H.; Wang, G. X. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis. J. Energy Chem. 2023, 76, 195–213.

[67]

Cho, D. Y.; Song, S. J.; Kim, U. K.; Kim, K. M.; Lee, H. K.; Hwang, C. S. Spectroscopic investigation of the hole states in Ni-deficient NiO films. J. Mater. Chem. C 2013, 1, 4334–4338.

[68]

Preda, I.; Abbate, M.; Gutiérrez, A.; Palacín, S.; Vollmer, A.; Soriano, L. Study of the growth of NiO on highly oriented pyrolytic graphite by X-ray absorption spectroscopy. J. Electron Spectrosc. Relat. Phenom 2007, 156–158, 111–114.

[69]

Fan, L. Z.; Zhang, B. B.; Qiu, Z.; Dharanipragada, N. V. R.; Timmer, B. J. J.; Zhang, F. G.; Sheng, X.; Liu, T. Q.; Meng, Q. J.; Inge, A. K. et al. Molecular functionalization of NiO nanocatalyst for enhanced water oxidation by electronic structure engineering. ChemSusChem 2020, 13, 5901–5909.

[70]

Kuai, C. G.; Xi, C.; Hu, A. Y.; Zhang, Y.; Xu, Z. R.; Nordlund, D.; Sun, C. J.; Cadigan, C. A.; Richards, R. M.; Li, L. X. et al. Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 2021, 143, 18519–18526.

[71]

Moonshiram, D.; Purohit, V.; Concepcion, J. J.; Meyer, T. J.; Pushkar, Y. Mechanism of catalytic water oxidation by the ruthenium blue dimer catalyst: Comparative study in D2O versus H2O. Materials 2013, 6, 392–409.

[72]

Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 2008, 47, 1727–1752.

[73]

Yamada, H.; Siems, W. F.; Koike, T.; Hurst, J. K. Mechanisms of water oxidation catalyzed by the cis, cis-[(bpy)2Ru(OH2)]2O4+ ion. J. Am. Chem. Soc. 2004, 126, 9786–9795.

[74]

Kiefer, P. M.; Hynes, J. T. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effects. J. Phys. Chem. A 2004, 108, 11793–11808.

[75]

Liu, Y. Y.; Yan, Y. M.; Xing, T.; Shi, Q. Understanding the large kinetic isotope effect of hydrogen tunneling in condensed phases by using double-well model systems. J. Phys. Chem. B. 2021, 125, 5959–5970.

[76]

Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2021, 60, 1976–1985.

[77]

Li, Y. Z.; Zhan, S. Q.; Tong, L. P.; Li, W. L.; Zhao, Y. L.; Zhao, Z. Q.; Liu, C.; Ahlquist, M. S. G.; Li, F. S.; Sun, L. C. Switching the O–O bond formation pathways of Ru-pda water oxidation catalyst by third coordination sphere engineering. Research 2021, 2021, 9851231.

[78]

Krishtalik, L. I. The mechanism of the proton transfer: An outline. Biochim. Biophys. Acta (BBA)-Bioenerg. 2000, 1458, 6–27.

[79]

Liu, Y. S.; McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 2019, 10, 1683.

Nano Research
Pages 2481-2491
Cite this article:
Li G, Li L, Li W, et al. A hybrid nickel/iron-pyromellitic acid electrocatalyst for oxygen evolution reaction. Nano Research, 2024, 17(4): 2481-2491. https://doi.org/10.1007/s12274-023-6155-3
Topics:

648

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 May 2023
Revised: 01 September 2023
Accepted: 04 September 2023
Published: 20 October 2023
© Tsinghua University Press 2023
Return