AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance

Tanlin Chen1Yingrui Tian1Zihao Guo1Yao Chen1Qing Qi1( )Fanbin Meng1,2( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Shenzhen Institute of Southwest Jiaotong University, Shenzhen 518000, China
Show Author Information

Graphical Abstract

Graphene oxide (GO) was used as a template to induce the confined growth of zeolitic imidazolate framework (ZIF)-8 into two-dimensional (2D) strip-like structure towards constructing multi-functional composites which integrate microwave absorption, anti-corrosion, and antibacterial properties.

Abstract

In order to meet the requirements of the marine environment for microwave absorption (MA) materials, we put forward the strategy of constructing multi-functional composite materials, which integrate microwave absorption, anti-corrosion, and antibacterial properties. Herein, graphene oxide (GO) was used as a template to induce the growth of zeolitic imidazolate framework-8 (ZIF-8), simultaneously as a two-dimensional (2D) nanocontainers to load corrosion inhibitors to achieve pH-responsive and self-healing properties. Finally, quaternary ammonium salt (dimethyl octadecyl(3-trimethoxylsilyl propyl) ammonium chloride (DMAOP)) and sodium ascorbate (VCNa) were introduced to achieve synergistic antibacterial activity and the reduction of GO. The 2D strip-like structure of ZIF-8 was due to the confined growth induced by the electrostatic attraction between ZIF-8 and GO sheets. The as-obtained reduced GO (RGO)/ZIF-8/DMAOP5 exhibited excellent microwave absorption (MA) properties, with a minimum reflection loss (RL) value of −47.08 dB at 12.73 GHz when the thickness was 2.8 mm. Moreover, the effective absorption bandwidth reached 6.84 GHz. After soaking in 3.5% NaCl solution for 35 days, the RGO/ZIF-8/DMAOP5-0.7% coating still achieved an impedance value of 4.585 × 107 Ω·cm2 and a protective efficiency of 99.994%, providing superior anti-corrosion properties. In addition, fantastic antibacterial activity was obtained, with the antibacterial rates of RGO/ZIF-8/DMAOP10 reaching 99.39% and 100% against Escherichia coli and Staphylococcus aureus. This work could open new avenues towards the development of a new generation of multifunctional MA materials.

Electronic Supplementary Material

Download File(s)
12274_2023_6168_MOESM1_ESM.pdf (912.4 KB)

References

[1]

Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

[2]

Luo, S. L.; Xiang, T. T.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Feng, Y. Z. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134.

[3]

Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

[4]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[5]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[6]

Zhao, K. Y.; Luo, C. L.; Sun, C.; Huang, M. L.; Wang, M. Construction of heterogeneous interfaces on Ti3AlC2 micro-particles via surface dotting liquid metal to enhance electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107640.

[7]

Wang, Y.; Gao, Y. N.; Yue, T. N.; Chen, X. D.; Che, R. C.; Wang, M. Liquid metal coated copper micro-particles to construct core–shell structure and multiple heterojunctions for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 607, 210–218.

[8]

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

[9]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[10]

Sun, C.; Zhao, K. Y.; Huang, M. L.; Luo, C. L.; Chen, X. D.; Wu, H. J.; Wang, M. Heterointerface construction for permalloy microparticles through the surface modification of bilayer metallic organic frameworks: Toward microwave absorption enhancement. J. Colloid Interface Sci. 2023, 644, 454–465.

[11]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[12]

He, J.; Han, M. J.; Wen, K.; Liu, C. L.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

[13]

Yang, D.; Tao, J. R.; Yang, Y.; He, Q. M.; Wang, M. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric–magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. J. Mater. Sci. Technol. 2023, 138, 245–255.

[14]

Chen, T. L.; Wang, B. B.; Qi, Z. H.; Guo, Z. H.; Tian, Y. R.; Meng, F. B. Coatings comprised of graphene oxide decorated with helical polypyrrole nanofibers for microwave absorption and corrosion protection. ACS Appl. Nano Mater. 2022, 5, 9780–9791.

[15]

Ren, H. S.; Li, T.; Wang, H. G.; Guo, Z. H.; Chen, T. L.; Meng, F. B. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582.

[16]

Jiang, L.; Dong, Y. M.; Yuan, Y.; Zhou, X.; Liu, Y. R.; Meng, X. K. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications. Chem. Eng. J. 2022, 430, 132823.

[17]

Keshmiri, N.; Najmi, P.; Ramezanzadeh, M.; Ramezanzadeh, B. Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. J. Cleaner Prod. 2021, 319, 128732.

[18]

Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release 2020, 320, 159–167.

[19]

Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 2020, 161, 231–251.

[20]

Yang, M.; Zhang, J.; Wei, Y. H.; Zhang, J.; Tao, C. M. Recent advances in metal-organic framework-based materials for anti-Staphylococcus aureus infection. Nano Res. 2022, 15, 6220–6242.

[21]

Meng, F. B.; Chen, Y.; Liu, W. H.; Zhang, L. K.; Deng, W. T.; Zhao, Z. C. Multifunctional RGO-based films with “brick-slurry” structure: High-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon 2022, 200, 156–165.

[22]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

[23]

Zhong, F.; He, Y.; Wang, P. Q.; Chen, C. L.; Wu, Y. Q. Novel pH-responsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128641.

[24]

Ma, L. W.; Wang, J. K.; Zhang, D. W.; Huang, Y.; Huang, L. Y.; Wang, P. J.; Qian, H. C.; Li, X. G.; Terryn, H. A.; Mol, J. M. C. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chem. Eng. J. 2021, 404, 127118.

[25]

Li, J.; Tao, Z. L.; Cui, J. C.; Shen, S. L.; Qiu, H. X. Facile fabrication of dual functional graphene oxide microcapsules carrying corrosion inhibitor and encapsulating self-healing agent. Polymers 2022, 14, 4067.

[26]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[27]

Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 2010, 22, 253202.

[28]

Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.

[29]

Gibbs, J. W.; Wilson, E. B.; Thornton, P. The scientific papers of J. Willard Gibbs: Vol. I. Thermodynamics, elementary principles in statistical mechanics and vector analysis. Am. J. Phys. 1962, 30, 313–314.

[30]

Wulff, G. On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral. 1901, 34, 449–530.

[31]

Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

[32]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[33]

Li, H.; Qiang, Y. J.; Zhao, W. J.; Zhang, S. T. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corros. Sci. 2021, 191, 109715.

[34]

Wang, S.; Zhang, S. Q. Study on the structure activity relationship of ZIF-8 synthesis and thermal stability. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1317–1322.

[35]

Karimi, V.; Khataee, A.; Vatanpour, V.; Safarpour, M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep. Purif. Technol. 2019, 229, 115838.

[36]

Nabipour, H.; Sadr, M. H.; Bardajee, G. R. Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 2017, 41, 7364–7370.

[37]

Zhang, H. F.; Zhao, M.; Yang, Y.; Lin, Y. S. Hydrolysis and condensation of ZIF-8 in water. Microporous Mesoporous Mater. 2019, 288, 109568.

[38]

Lyn, F. H.; Peng, T. C.; Ruzniza, M. Z.; Hanani, Z. A. N. Effect of oxidation degrees of graphene oxide (GO) on the structure and physical properties of chitosan/GO composite films. Food Packag. Shelf Life 2019, 21, 100373.

[39]

Xiong, L. L.; Liu, J. H.; Yu, M.; Li, S. M. Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ZIF-8/graphene oxide two-dimensional nanocomposites. Corros. Sci. 2019, 146, 70–79.

[40]

Zarrin, H.; Fu, J.; Jiang, G. P.; Yoo, S.; Lenos, J.; Fowler, M.; Chen, Z. W. Quaternized graphene oxide nanocomposites as fast hydroxide conductors. ACS Nano 2015, 9, 2028–2037.

[41]

Liu, X. M.; Xu, H. L.; Xie, F. T.; Fasel, C.; Yin, X. W.; Riedel, R. Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon 2020, 163, 254–264.

[42]

Pan, H.; Xu, M. Z.; Qi, Q.; Liu, X. B. Facile preparation and excellent microwave absorption properties of an RGO/Co0.33Ni0.67 lightweight absorber. RSC Adv. 2017, 7, 43831–43838.

[43]

Kolmykov, O.; Commenge, J. M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 2017, 122, 31–41.

[44]

Bagchi, D.; Bhattacharya, A.; Dutta, T.; Nag, S.; Wulferding, D.; Lemmens, P.; Pal, S. K. Nano MOF entrapping hydrophobic photosensitizer for dual-stimuli-responsive unprecedented therapeutic action against drug-resistant bacteria. ACS Appl. Bio Mater. 2019, 2, 1772–1780.

[45]

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters and sample orientation. Phys. Rev. B 2009, 79, 205433.

[46]

Zhang, H. F.; Zhao, M.; Lin, Y. S. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019, 279, 201–210.

[47]

Yu, C.; Kim, Y. J.; Kim, J.; Eum, K. ZIF-L to ZIF-8 transformation: Morphology and structure controls. Nanomaterials 2022, 12, 4224.

[48]

Liu, G. H.; Jiang, Z. Y.; Cao, K. T.; Nair, S.; Cheng, X. X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. S. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. Membr. Sci. 2017, 523, 185–196.

[49]

Li, X.; Li, Z. H.; Lu, L.; Huang, L. M.; Xiang, L.; Shen, J.; Liu, S. Y.; Xiao, D. R. The solvent induced inter-dimensional phase transformations of cobalt zeolitic-imidazolate frameworks. Chem.—Eur. J. 2017, 23, 10638–10643.

[50]

Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794–1801.

[51]

Zhang, L.; Zheng, B.; Gao, Y.; Wang, L. L.; Wang, J. L.; Duan, X. B. Confined water vapor in ZIF-8 nanopores. ACS Omega 2022, 7, 64–69.

[52]

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

[53]

Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

[54]

Tian, Y. R.; Zhi, D. D.; Li, T.; Li, J. Z.; Li, J. T.; Xu, Z. K.; Kang, W.; Meng, F. B. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

[55]

Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351.

[56]

Su, L.; Ma, J. X.; Zhang, F. Z.; Fan, Y. C.; Luo, W.; Wang, L. J.; Jiang, W.; Yang, J. P. Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 2021, 7, 80–88.

[57]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; Wang, Y.; Luo, J. H. Core–shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 2019, 11, 25624–25635.

[58]

Gao, S.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Yin, P. G.; Zhang, X. J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. B Eng. 2021, 215, 108781.

[59]

Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

[60]

Zhao, Y.; Jiang, F.; Chen, Y. Q.; Hu, J. M. Coatings embedded with GO/MOFs nanocontainers having both active and passive protecting properties. Corros. Sci. 2020, 168, 108563.

[61]

Qiu, S. H.; Li, W.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution. ACS Appl. Mater. Interfaces 2017, 9, 34294–34304.

[62]

Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

[63]

Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.

[64]

Lashgari, S. M.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Unique 2-methylimidazole based inorganic building brick nano-particles (NPs) functionalized with 3-aminopropyltriethoxysilane with excellent controlled corrosion inhibitors delivery performance; experimental coupled with molecular/DFT-D simulations. J. Taiwan Inst. Chem. Eng. 2020, 117, 209–222.

[65]

Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121.

[66]

Karahan, H. E.; Wang, Y. L.; Li, W.; Liu, F.; Wang, L.; Sui, X.; Riaz, M. A.; Chen, Y. Antimicrobial graphene materials: The interplay of complex materials characteristics and competing mechanisms. Biomater. Sci. 2018, 6, 766–773.

[67]

Kanazawa, A.; Ikeda, T.; Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. VIII. Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. J. Appl. Polym. Sci. 1994, 53, 1245–1249.

Nano Research
Pages 913-926
Cite this article:
Chen T, Tian Y, Guo Z, et al. Design of novel RGO/2D strip-like ZIF-8/DMAOP ternary hybrid structure towards high-efficiency microwave absorption, active and passive anti-corrosion, and synergistic antibacterial performance. Nano Research, 2024, 17(3): 913-926. https://doi.org/10.1007/s12274-023-6168-y
Topics:
Part of a topical collection:

1058

Views

18

Crossref

20

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 22 August 2023
Revised: 04 September 2023
Accepted: 04 September 2023
Published: 27 October 2023
© Tsinghua University Press 2023
Return