Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbon nanotubes (CNTs) have been largely investigated in various biomedical fields on the basis of their excellent physical properties and drug delivery performance. However, application capacities of CNTs in blood-contacting medical devices are given due attention though there have been increasingly accumulated experimental data showing promising potentials. Herein, we collected and showed research evidence that strong interactions of CNTs to plasm proteins are attractive and valuable features holding great application potentials for medical devices and implants used in blood-contacting environments, while blood compatibility has been a big challenge faced by this kind of devices. This review introduces the strong and nonspecific plasm protein adsorptions of CNTs due to their high purity of carbon composition and nanostructures, followed by discussions on the implication of these interactions to blood coagulation and complement activation, aiming to sort out and provide insights into the application potentials of CNTs in blood-contacting medical devices and implants in the context of anti-thrombosis and blood purification.
Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.
Wepasnick, K. A.; Smith, B. A.; Schrote, K. E.; Wilson, H. K.; Diegelmann, S. R.; Fairbrother, D. H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011, 49, 24–36.
Gao, L. Z.; Nie, L.; Wang, T. H.; Qin, Y. J.; Guo, Z. X.; Yang, D. L.; Yan, X. Y. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 2006, 7, 239–242.
Singh, A.; Hsu, M. H.; Gupta, N.; Khanra, P.; Kumar, P.; Verma, V. P.; Kapoor, M. Derivatized carbon nanotubes for gene therapy in mammalian and plant cells. ChemPlusChem 2020, 85, 466–475.
Zhang, Y.; Bai, Y. H.; Yan, B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today 2010, 15, 428–435.
Hosseini, S. M.; Mohammadnejad, J.; Najafi-Taher, R.; Zadeh, Z. B.; Tanhaei, M.; Ramakrishna, S. Multifunctional carbon-based nanoparticles: Theranostic applications in cancer therapy and diagnosis. ACS Appl. Bio Mater. 2023, 6, 1323–1338.
Xu, H. Y.; Meng, J.; Kong, H. What are carbon nanotubes’ roles in anti-tumor therapies. . Sci. China Chem. 2010, 53, 2250–2256.
Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.
Horbett, T. A. Chapter II.1.2 - adsorbed proteins on biomaterials. In Biomaterials Science. 3rd ed. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Eds.;. Academic Press: Cambridge 2013, pp 394–408.
Ouassil, N.; Pinals, R. L.; Bonis-O'Donnell, J. T. D.; Wang, J. W.; Landry, M. P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci. Adv. 2022, 8, eabm0898.
Meng, J.; Song, L.; Xu, H. Y.; Kong, H.; Wang, C. Y.; Guo, X. T.; Xie, S. S. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses. Nanomedicine 2005, 1, 136–142.
Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.
Zhong, J.; Meng, J.; Liang, X. Q.; Song, L.; Zhao, T.; Xie, S. S.; Ibrahim, K.; Qian, H. J.; Wang, J. O.; Guo, J. H. et al. XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Mater. Lett. 2009, 63, 431–433.
Song, L.; Meng, J.; Zhong, J.; Liu, L. F.; Dou, X. Y.; Liu, D. F.; Zhao, X. W.; Luo, S. D.; Zhang, Z. X.; Xiang, Y. J. et al. Human fibrinogen adsorption onto single-walled carbon nanotube films. Colloids Surf. B: Biointerfaces 2006, 49, 66–70.
Zhong, J.; Song, L.; Meng, J.; Gao, B.; Chu, W. S.; Xu, H. Y.; Luo, Y.; Guo, J. H.; Marcelli, A.; Xie, S. S. et al. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 2009, 47, 967–973.
Meng, J.; Song, L.; Zhong, J.; Wang, C. Y.; Kong, H.; Wu, Z. Y.; Xu, H. Y.; Xie, S. S. Comparison of adsorption behaviour for fibrinogen and albumin on single walled carbon nanotubes nonwoven. Solid State Phenom 2007, 121–123, 781–784.
Vinante, M.; Digregorio, G.; Lunelli, L.; Forti, S.; Musso, S.; Vanzetti, L.; Lui, A.; Pasquardini, L.; Giorcelli, M.; Tagliaferro, A. et al. Human plasma protein adsorption on carbon-based materials. J. Nanosci. Nanotechnol. 2009, 9, 3785–3791.
Li, D. J.; Yuan, L.; Yang, Y.; Deng, X. Y.; Lü, X. Y.; Huang, Y.; Cao, Z.; Liu, H.; Sun, X. L. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes. Sci. China, Ser. C: Life Sci. 2009, 52, 479–482.
Yang, M.; Meng, J.; Mao, X. B.; Yang, Y.; Cheng, X. L.; Yuan, H.; Wang, C.; Xu, H. Y. Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase. J. Nanosci. Nanotechnol. 2010, 10, 7550–7553.
Park, S. J.; Khang, D. Conformational changes of fibrinogen in dispersed carbon nanotubes. Int. J. Nanomed. 2012, 7, 4325–4333.
Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.
Ke, P. C.; Lin, S. J.; Parak, W. J.; Davis, T. P.; Caruso, F. A decade of the protein corona. ACS Nano 2017, 11, 11773–11776.
Lu, N. H.; Sui, Y. H.; Tian, R.; Peng, Y. Y. Adsorption of plasma proteins on single-walled carbon nanotubes reduced cytotoxicity and modulated neutrophil activation. Chem. Res. Toxicol. 2018, 31, 1061–1068.
Chen, R.; Radic, S.; Choudhary, P.; Ledwell, K. G.; Huang, G.; Brown, J. M.; Ke, P. C. Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Appl. Phys. Lett. 2012, 101, 133702.
Lee, H. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. J. Mol. Graphics Modell. 2017, 75, 1–8.
Vlasova, I. I.; Mikhalchik, E. V.; Barinov, N. A.; Kostevich, V. A.; Smolina, N. V.; Klinov, D. V.; Sokolov, A. V. Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood. Nanomedicine 2016, 12, 1615–1625.
Lu, N. H.; Sui, Y. H.; Ding, Y.; Tian, R.; Peng, Y. Y. Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes. J. Mater. Sci.: Mater. Med. 2018, 29, 115.
Nicoletti, M.; Gambarotti, C.; Fasoli, E. Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes. J. Chromatogr. B 2021, 1163, 122504.
Pinals, R. L.; Yang, D.; Lui, A.; Cao, W.; Landry, M. P. Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 2020, 142, 1254–1264.
Pinals, R. L.; Yang, D.; Rosenberg, D. J.; Chaudhary, T.; Crothers, A. R.; Iavarone, A. T.; Hammel, M.; Landry, M. P. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew. Chem., Int. Ed. 2020, 59, 23668–23677.
Salvador-Morales, C.; Flahaut, E.; Sim, E.; Sloan, J.; Green, M. L. H.; Sim, R. B. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 2006, 43, 193–201.
Rybak-Smith, M. J.; Sim, R. B. Complement activation by carbon nanotubes. Adv. Drug Delivery Rev. 2011, 63, 1031–1041.
Salvador-Morales, C.; Basiuk, E. V.; Basiuk, V. A.; Green, M. L.; Sim, R. B. Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2008, 8, 2347–2356.
Pondman, K. M.; Pednekar, L.; Paudyal, B.; Tsolaki, A. G.; Kouser, L.; Khan, H. A.; Shamji, M. H.; Haken, B. T.; Stenbeck, G.; Sim, R. B. et al. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes. Nanomedicine 2015, 11, 2109–2118.
Saint-Cricq, M.; Carrete, J.; Gaboriaud, C.; Gravel, E.; Doris, E.; Thielens, N.; Mingo, N.; Ling, W. L. Human immune protein C1q selectively disaggregates carbon nanotubes. Nano Lett. 2017, 17, 3409–3415.
Ling, W. L.; Biro, A.; Bally, I.; Tacnet, P.; Deniaud, A.; Doris, E.; Frachet, P.; Schoehn, G.; Pebay-Peyroula, E.; Arlaud, G. J. Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 2011, 5, 730–737.
Rybak-Smith, M. J.; Tripisciano, C.; Borowiak-Palen, E.; Lamprecht, C.; Sim, R. B. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption. J. Biomed. Nanotechnol. 2011, 7, 830–839.
Hamad, I.; Hunter, A. C.; Rutt, K. J.; Liu, Z.; Dai, H. J.; Moghimi, S. M. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 2008, 45, 3797–3803.
Belime, A.; Gravel, E.; Brenet, S.; Ancelet, S.; Caneiro, C.; Hou, Y. X.; Thielens, N.; Doris, E.; Ling, W. L. Mode of PEG coverage on carbon nanotubes affects binding of innate immune protein C1q. J. Phys. Chem. B 2018, 122, 757–763.
Andersen, A. J.; Windschiegl, B.; Ilbasmis-Tamer, S.; Degim, I. T.; Hunter, A. C.; Andresen, T. L.; Moghimi, S. M. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine 2013, 9, 469–473.
Merle, N. S.; Church, S. E.; Fremeaux-Bacchi, V.; Roumenina, L. T. Complement system part I - molecular mechanisms of activation and regulation. Front. Immunol. 2015, 6, 262.
Meng, J.; Yang, M.; Jia, F. M.; Kong, H.; Zhang, W. Q.; Wang, C. Y.; Xing, J. M.; Xie, S. S.; Xu, H. Y. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 2010, 21, 145104.
Yang, M.; Meng, J.; Cheng, X. L.; Lei, J.; Guo, H.; Zhang, W. Q.; Kong, H.; Xu, H. Y. Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2012, 2, 258–270.
Goradel, N. H.; Nemati, M.; Bakhshandeh, A.; Arashkia, A.; Negahdari, B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int. Immunopharmacol. 2023, 117, 109887.
Chen, F. M.; Wang, Y. J.; Gao, J.; Saeed, M.; Li, T. L.; Wang, W. Q.; Yu, H. J. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021, 270, 120709.
Liu, L.; Gong, Y. X.; Liu, G. L.; Zhu, B.; Wang, G. X. Protective immunity of grass carp immunized with DNA vaccine against Aeromonas hydrophila by using carbon nanotubes as a carrier molecule. Fish Shellfish Immunol. 2016, 55, 516–522.
Jia, Y. J.; Guo, Z. R.; Ma, R.; Qiu, D. K.; Zhao, Z.; Wang, G. X.; Zhu, B. Immune efficacy of carbon nanotubes recombinant subunit vaccine against largemouth bass ulcerative syndrome virus. Fish Shellfish Immunol. 2020, 100, 317–323.
Feng, L.; Andrade, J. D. Protein adsorption on low temperature isotropic carbon: V. How is it related to its blood compatibility? J. Biomater. Sci., Polym. Ed. 1995, 7, 439–452.
Feng, L.; Andrade, J. D. Protein adsorption on low temperature isotropic carbon: III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen. Biomaterials 1994, 15, 324–333.
Meng, J.; Kong, H.; Xu, H. Y.; Song, L.; Wang, C. Y.; Xie, S. S. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. J. Biomed. Mater. Res. Part A 2005, 74A, 208–214.
Tan, D. S.; Liu, L. X.; Li, Z.; Fu, Q. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. J. Biomed. Mater. Res. Part A 2015, 103, 2711–2719.
Koh, L. B.; Rodriguez, I.; Zhou, J. J. Platelet adhesion studies on nanostructured poly(lactic-co-glycolic-acid)-carbon nanotube composite. J. Biomed. Mater. Res. Part A 2008, 86A, 394–401.
Koh, L. B.; Rodriguez, I.; Venkatraman, S. S. A novel nanostructured poly(lactic-co-glycolic-acid)-multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomater. 2009, 5, 3411–3422.
Li, Z. Q.; Zhao, X. W.; Ye, L.; Coates, P.; Caton-Rose, F.; Martyn, M. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. J. Biomater. Appl. 2014, 28, 978–989.
Endo, M.; Koyama, S.; Matsuda, Y.; Hayashi, T.; Kim, Y. A. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube-nylon-based composite. Nano Lett. 2005, 5, 101–105.
Naskar, S.; Panda, A. K.; Jana, A.; Kanagaraj, S.; Basu, B. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. J. Biomed. Mater. Res., Part B 2020, 108, 2320–2343.
Dhandayuthapani, B.; Varghese, S. H.; Aswathy, R. G.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D. Evaluation of antithrombogenicity and hydrophilicity on Zein-SWCNT electrospun fibrous nanocomposite scaffolds. Int. J. Biomater. 2012, 2012, 345029.
Ju, J.; Liang, F. X.; Zhang, X. X.; Sun, R.; Pan, X. G.; Guan, X. Y.; Cui, G. N.; He, X.; Li, M. Y. Advancement in separation materials for blood purification therapy. Chin. J. Chem. Eng. 2019, 27, 1383–1390.
Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29.
Liu, T. Y.; Lin, W. C.; Huang, L. Y.; Chen, S. Y.; Yang, M. C. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 2005, 26, 1437–1444.
Nica, S. L.; Zaltariov, M. F.; Pamfil, D.; Bargan, A.; Rusu, D.; Rata, D. M.; Găină, C.; Atanase, L. I. MWCNTs composites-based on new chemically modified polysulfone matrix for biomedical applications. Nanomaterials 2022, 12, 1502.
Yeh, Y. T.; Lin, Z.; Zheng, S. Y.; Terrones, M. A carbon nanotube integrated microfluidic device for blood plasma extraction. Sci. Rep. 2018, 8, 13623.
Mangukiya, S.; Prajapati, S.; Kumar, S.; Aswal, V. K.; Murthy, C. N. Polysulfone-based composite membranes with functionalized carbon nanotubes show controlled porosity and enhanced electrical conductivity. J. Appl. Polym. Sci. 2016, 133, 43778.
Verma, S. K.; Modi, A.; Bellare, J. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver. Colloids Surf. B: Biointerfaces 2019, 181, 890–895.
Arahman, N.; Rosnelly, C. M.; Yusni, Y.; Fahrina, A.; Silmina, S.; Ambarita, A. C.; Bilad, M. R.; Gunawan, P.; Rajabzadeh, S.; Takagi, R. et al. Ultrafiltration of α-lactalbumin protein: Acquaintance of the filtration performance by membrane structure and surface alteration. Polymers 2021, 13, 3632.
Irfan, M.; Irfan, M.; Shah, S. M.; Baig, N.; Saleh, T. A.; Ahmed, M.; Naz, G.; Akhtar, N.; Muhammad, N.; Idris, A. Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. Mater. Sci. Eng.: C 2019, 103, 109769.
Irfan, M.; Irfan, M.; Idris, A.; Baig, N.; Saleh, T. A.; Nasiri, R.; Iqbal, Y.; Muhammad, N.; Rehman, F.; Khalid, H. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J. Biomed. Mater. Res. Part A 2019, 107, 513–525.
Chen, J.; Wang, L. C.; Wang, T. T.; Li, C. R.; Han, W. Y.; Chai, Y. M.; Liu, Z.; Ou, L. L.; Li, W. Z. Functionalized carbon nanotube-embedded poly(vinyl alcohol) microspheres for efficient removal of tumor necrosis factor-α. ACS Biomater. Sci. Eng. 2020, 6, 4722–4730.
Zhao, X. C.; Lu, D. W.; Hao, F.; Liu, R. T. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J. Hazard. Mater. 2015, 292, 98–107.
Qiao, L. Z.; Li, Y. L.; Liu, Y.; Wang, Y. H.; Du, K. F. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. J. Chromatogr. A 2020, 1634, 461659.
Yen, S. C.; Liu, Z. W.; Juang, R. S.; Sahoo, S.; Huang, C. H.; Chen, P. L.; Hsiao, Y. S.; Fang, J. T. Carbon nanotube/conducting polymer hybrid nanofibers as novel organic bioelectronic interfaces for efficient removal of protein-bound uremic toxins. ACS Appl. Mater. Interfaces 2019, 11, 43843–43856.
Meng, J.; Cheng, X. L.; Kong, H.; Yang, M.; Xu, H. Y. Preparation and biocompatibility evaluation of polyurethane filled with multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 2013, 13, 1467–1471.
Ridley, A. J.; Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992, 70, 389–399.