Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The safety of nanoparticle-based drug delivery systems (DDSs) for cancer treatment is still a challenge, restricted by the intrinsic cytotoxicity of drug carriers and leakage of loaded drug. Here, we propose a novel nanocarrier’s cytotoxicity avoidance strategy by synthesizing an encapsulation core–shell structure of zeolitic imidazolate framework-8 (ZIF-8)-based colloid particles (CPs) with an amorphous ZIF-8 skin. This encapsulation structure achieves an ultra-high loading rate (LR) of 90% (i.e., 9 mg doxorubicin (DOX) per 1 mg ZIF-8) for DOX and the protection of DOX from leaking. Notably, to deliver unit-dose drug, this ultra-high LR of 90% significantly reduces the usage of ZIF-8 to 1.2% (2 orders of magnitude) compared to that of DOX@ZIF-8 with a 10% LR, in which cytotoxicity of ZIF-8 could well below the safety limit and then be relatively ignored. Safety, drug delivery efficacy, scale-up ability, and universality of this encapsulation structure have been further verified. Our findings suggest the great potential of this ZIF-8-based encapsulation core–shell structure in the field of drug delivery.
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 1975, 51, 135–153.
Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 2001, 70, 1–20.
Xu, L. N.; Chai, J. S.; Wang, Y.; Zhao, X. Z.; Guo, D. S.; Shi, L. Q.; Zhang, Z. Z.; Liu, Y. Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Res. 2022, 15, 7295–7303.
Kakemi, K.; Arita, T.; Muranishi, S. Absorption and excretion of drugs. XXVII. Effect of nonionic surface-active agents on rectal absorption of sulfonamides. Chem. Pharm. Bull. 1965, 13, 976–985.
Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Controlled Release 2005, 109, 169–188.
Gregoriadis, G. The carrier potential of liposomes in biology and medicine: (First of two parts). N. Engl. J. Med. 1976, 295, 704–710.
Gregoriadis, G. The carrier potential of liposomes in biology and medicine: (Second of two parts). N. Engl. J. Med. 1976, 295, 765–770.
Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 2868–2873.
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124.
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.
Jiang, S.; Liu, C. C.; He, Q. J.; Dang, K.; Zhang, W. W.; Tian, Y. Porphyrin-based metal-organic framework nanocrystals for combination of immune and sonodynamic therapy. Nano Res. 2023, 16, 9633–9641.
Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323.
Liang, M. M.; Fan, K. L.; Zhou, M.; Duan, D. M.; Zheng, J. Y.; Yang, D. L.; Feng, J.; Yan, X. Y. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA 2014, 111, 14900–14905.
Gu, C. Y.; Yang, S. Y.; Liu, X. S.; Jin, Y.; Yu, Y.; Lu, L. J. A biomimetic adipocyte mesenchymal stem cell membrane-encapsulated drug delivery system for the treatment of rheumatoid arthritis. Nano Res. 2023, 16, 11401–11410.
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.
Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.
Zhang, J. L.; Cheng, D. F.; He, J. Y.; Hong, J. J.; Yuan, C.; Liang, M. M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat. Protoc. 2021, 16, 4878–4896.
Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007, 4, 297–305.
Sharma, A.; Sharma, U. S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140.
Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.
Jiang, S.; He, Q. J.; Li, C. C.; Dang, K.; Ye, L.; Zhang, W. W.; Tian, Y. Employing the thiol-ene click reaction via metal-organic frameworks for integrated sonodynamic-starvation therapy as an oncology treatment. Sci. China Mater. 2022, 65, 1112–1121.
Sun, C. Y.; Qin, C.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Su, Z. M.; Huang, P.; Wang, C. G.; Wang, E. B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41, 6906–6909.
Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 2009, 131, 15834–15842.
Xin, Y.; Wang, J. J.; Wu, Y. H.; Li, Q. Q.; Dong, M. Y.; Liu, C.; He, Q. J.; Wang, R. F.; Wang, D.; Jiang, S. et al. Identification of nanog as a novel inhibitor of Rad51. Cell Death Dis. 2022, 13, 193.
Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.
Barenholz, Y. Doxil®-the first FDA-approved nano-drug: Lessons learned. J. Controlled Release 2012, 160, 117–134.
Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.
Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294–3305.
Wang, Y.; Yan, J. H.; Wen, N. C.; Xiong, H. J.; Cai, S. D.; He, Q. Y.; Hu, Y. Q.; Peng, D. M.; Liu, Z. B.; Liu, Y. F. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619.
Wu, Q.; Niu, M.; Chen, X. W.; Tan, L. F.; Fu, C. H.; Ren, X. L.; Ren, J.; Li, L. F.; Xu, K.; Zhong, H. S. et al. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 2018, 162, 132–143.
Zhang, Z. Y.; Xu, Y. D.; Ma, Y. Y.; Qiu, L. L.; Wang, Y.; Kong, J. L.; Xiong, H. M. Biodegradable ZnO@polymer core–shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew. Chem., Int. Ed. 2013, 52, 4127–4131.
Jahn, A.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007, 23, 6289–6293.
Wang, M.; Alberti, K.; Sun, S.; Arellano, C. L.; Xu, Q. B. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 2893–2898.
Doonan, C.; Riccò, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Metal-organic frameworks at the biointerface: Synthetic strategies and applications. Acc. Chem. Res. 2017, 50, 1423–1432.
Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.
Jeong, G. Y.; Ricco, R.; Liang, K.; Ludwig, J.; Kim, J. O.; Falcaro, P.; Kim, D. P. Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation. Chem. Mater. 2015, 27, 7903–7909.
Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. Three-step nucleation of metal-organic framework nanocrystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2008880118.
Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.
Zhu, Y. H.; Ciston, J.; Zheng, B.; Miao, X. H.; Czarnik, C.; Pan, Y. C.; Sougrat, R.; Lai, Z. P.; Hsiung, C. E.; Yao, K. X. et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 2017, 16, 532–536.
Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydr. Polym. 2019, 222, 115033.
Zhou, Y.; Zhou, L.; Zhang, X. H.; Chen, Y. L. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity. Microporous Mesoporous Mater. 2016, 225, 488–493.
Ran, J. B.; Zeng, H.; Cai, J.; Jiang, P.; Yan, P.; Zheng, L. Y.; Bai, Y.; Shen, X. Y.; Shi, B.; Tong, H. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: An innovative application of metal organic frameworks in bone implants. Chem. Eng. J. 2018, 333, 20–33.
Jian, M. P.; Liu, B.; Zhang, G. S.; Liu, R. P.; Zhang, X. W. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 67–76.
Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073.
Chauhan, A.; Chauhan, P. Powder XRD technique and its applications in science and technology. J. Anal. Bioanal. Tech. 2014, 5, 1–5.
Ryczkowski, J. IR spectroscopy in catalysis. Catal. Today 2001, 68, 263–381.
Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.
Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280.
Stubbs, M.; McSheehy, P. M. J.; Griffiths, J. R.; Bashford, C. L. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 2000, 6, 15–19.
Ren, H.; Zhang, L. Y.; An, J. P.; Wang, T. T.; Li, L.; Si, X. Y.; He, L.; Wu, X. T.; Wang, C. G.; Su, Z. M. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem. Commun. 2014, 50, 1000–1002.
Zhou, K. J.; Liu, H. M.; Zhang, S. R.; Huang, X. N.; Wang, Y. G.; Huang, G.; Sumer, B. D.; Gao, J. M. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811.
Abdelhamid, H. N. Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: A review. Curr. Med. Chem. 2021, 28, 7023–7075.
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548–7558.
Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X. Z.; deMello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J. et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21.
Lian, T. S.; Ho, R. J. Y. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 2001, 90, 667–680.
Zhang, H.; Zhang, L.; Cao, Z. B.; Cheong, S.; Boyer, C.; Wang, Z. G.; Yun, S. L. J.; Amal, R.; Gu, Z. Two-dimensional ultra-thin nanosheets with extraordinarily high drug loading and long blood circulation for cancer therapy. Small 2022, 18, 2200299.
Yang, G. Z.; Liu, Y.; Wang, H. F.; Wilson, R.; Hui, Y.; Yu, L.; Wibowo, D.; Zhang, C.; Whittaker, A. K.; Middelberg, A. P. J. et al. Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angew. Chem. 2019, 131, 14495–14502.
Lei, Z. T.; Tang, Q. J.; Ju, Y. S.; Lin, Y. H.; Bai, X. W.; Luo, H. P.; Tong, Z. Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. J. Biomater. Sci. Polym. Ed. 2020, 31, 695–711.
Cheng, C.; Li, C.; Zhu, X. L.; Han, W.; Li, J. H.; Lv, Y. Doxorubicin-loaded Fe3O4-ZIF-8 nano-composites for hepatocellular carcinoma therapy. J. Biomater. Appl. 2019, 33, 1373–1381.
Bi, J.; Lu, Y.; Dong, Y. S.; Gao, P. Synthesis of folic acid-modified DOX@ZIF-8 nanoparticles for targeted therapy of liver cancer. J. Nanomater. 2018, 2018, 1357812.
Ogata, A. F.; Rakowski, A. M.; Carpenter, B. P.; Fishman, D. A.; Merham, J. G.; Hurst, P. J.; Patterson, J. P. Direct observation of amorphous precursor phases in the nucleation of protein-metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 1433–1442.
de J Velásquez-Hernández, M.; Ricco, R.; Carraro, F.; Limpoco, F. T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schröttner, H.; Frühwirt, P. et al. Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm 2019, 21, 4538–4544.
Suchý, T.; Bartoš, M.; Sedláček, R.; Šupová, M.; Žaloudková, M.; Martynková, G. S.; Foltán, R. Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials 2021, 14, 4388.