AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polymer: Non-fullerene acceptor heterojunction-based phototransistor for short-wave infrared photodetection

Jing Li1Weigang Zhu1( )Yang Han2Yanhou Geng2Wenping Hu1( )
Key Laboratory of Organic Integrated Circuits of Ministry of Education & Key Laboratory of Molecular Optoelectronic Sciences, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
Key Laboratory of Organic Integrated Circuits of Ministry of Education & Key Laboratory of Molecular Optoelectronic Sciences, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

The polymer-non fullerene acceptor heterojunction phototransistor achieves high sensitivity in short-wave infrared response and weak-light detection.

Abstract

It remains full of challenge for extending short-wave infrared (SWIR) spectral response and weak-light detection in the context of broad spectral responses for phototransistor. In this work, a novel poly(2,5-bis(4-hexyldodecyl)-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thiophene) (PDPPT3-HDO):COTIC-4F organic bulk-heterojunction is prepared as active layer for bulk heterojunction phototransistors. PDPPT3-HDO serves as a hole transport material, while COTIC-4F enhances the absorption of SWIR light to 1020 nm. As a result, smooth and connected PDPPT3-HDO film is fabricated by blade coating method and exhibits high hole mobility up to 2.34 cm2·V−1·s−1 with a current on/off ratio of 4.72 × 105 in organic thin film transistors. PDPPT3-HDO:COTIC-4F heterojunction phototransistors exhibit high responsivity of 2680 A·W−1 to 900 nm and 815 A·W−1 to 1020 nm, with fast response time (rise time ~ 20 ms and fall time ~ 100 ms). The photosensitivity of the heterojunction phototransistor improves as the mass ratio of non-fullerene acceptors increases, resulting in an approximately two orders of magnitude enhancement compared to the bare polymer phototransistor. Importantly, the phototransistor exhibits decent responsivity even under ultra-weak light power of 43 μW·cm−2 to 1020 nm. This work represents a highly effective and general strategy for fabricating efficient and sensitive SWIR light photodetectors.

Electronic Supplementary Material

Download File(s)
12274_2023_6175_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

[2]

Li, N.; Lan, Z. J.; Cai, L. F.; Zhu, F. R. Advances in solution-processable near-infrared phototransistors. J. Mater. Chem. C 2019, 7, 3711–3729.

[3]

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

[4]

Guo, H. T.; Qi, W. H. New materials and designs for 2D-based infrared photodetectors. Nano Res. 2023, 16, 3074–3103.

[5]

Zhang, J.; Itzler, M. A.; Zbinden, H.; Pan, J. W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Sci. Appl. 2015, 4, e286.

[6]

Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W. et al. Mid-infrared photoconductive response in AlGaN/GaN step quantum wells. Sci. Rep. 2015, 5, 14386.

[7]

Yoo, T. J.; Kim, S. Y.; Kwon, M. G.; Kim, C.; Chang, K. E.; Hwang, H. J.; Lee, B. H. A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector. Laser Photonics Rev. 2021, 15, 2000557.

[8]

Khan, J.; Ahmad, R. T. M.; Tan, J. Y.; Zhang, R. J.; Khan, U.; Liu, B. L. Recent advances in 2D organic-inorganic heterostructures for electronics and optoelectronics. SmartMat 2023, 4, e1156.

[9]

Cong, X. N.; Zheng, Y.; Huang, F.; You, Q.; Tang, J.; Fang, F. E.; Jiang, K.; Han, C.; Shi, Y. M. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Res. 2022, 15, 8442–8450.

[10]

Xu, Z. H.; He, M.; Wu, Q. K.; Wu, C. C.; Li, X. B.; Liu, B. L.; Tang, M. C.; Yao, J.; Wei, G. D. Ultrafast charge transfer 2D MoS2/organic heterojunction for sensitive photodetector. Adv. Sci. 2023, 10, 2207743.

[11]

Li, N.; Lei, Y. L.; Miao, Y. Q.; Zhu, F. R. Improved electrical ideality and photoresponse in near-infrared phototransistors realized by bulk heterojunction channels. iScience 2022, 25, 103711.

[12]

Lin, Y. C.; Yang, W. C.; Chiang, Y. C.; Chen, W. C. Recent advances in organic phototransistors: Nonvolatile memory, artificial synapses, and photodetectors. Small Sci. 2022, 2, 2100109.

[13]

Miao, J. L.; Du, M. D.; Fang, Y.; Zhang, X. L.; Zhang, F. J. Photomultiplication type all-polymer photodetectors with single carrier transport property. Sci. China Chem. 2019, 62, 1619–1624.

[14]

Wu, H. N.; Sun, Y. J.; Sun, L. J.; Wang, L. W.; Zhang, X. T.; Hu, W. P. Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. Chin. Chem. Lett. 2021, 32, 3007–3010.

[15]

Tian, X. Z.; Yao, J. R.; Zhang, L. J.; Han, B.; Shi, J. W.; Su, J. W.; Liu, J.; Li, C. L.; Liu, X. F.; Zhai, T. Y. et al. Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Res. 2022, 15, 2667–2673.

[16]

Ren, H.; Chen, J. D.; Li, Y. Q.; Tang, J. X. Recent progress in organic photodetectors and their applications. Adv. Sci. 2021, 8, 2002418.

[17]

Ji, S. B.; Wan, C. J.; Wang, T.; Li, Q. S.; Chen, G.; Wang, J. W.; Liu, Z. Y.; Yang, H.; Liu, X. J.; Chen, X. D. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 2020, 32, 2001496.

[18]

Wang, Z. L.; Song, X. N.; Jiang, Y.; Zhang, J. D.; Yu, X.; Deng, Y. F.; Han, Y.; Hu, W. P.; Geng, Y. H. A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent. Adv. Sci. 2019, 6, 1902412.

[19]

Lee, J.; Ko, S. J.; Seifrid, M.; Lee, H.; Luginbuhl, B. R.; Karki, A.; Ford, M.; Rosenthal, K.; Cho, K.; Nguyen, T. Q. et al. Bandgap narrowing in non-fullerene acceptors: Single atom substitution leads to high optoelectronic response beyond 1000 nm. Adv. Energy Mater. 2018, 8, 1801212.

[20]

Vollbrecht, J.; Lee, J.; Ko, S. J.; Brus, V. V.; Karki, A.; Le, W.; Seifrid, M.; Ford, M. J.; Cho, K.; Bazan, G. C. et al. Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. J. Mater. Chem. C 2020, 8, 15175–15182.

[21]

Zhu, Q. H.; Chen, Y. X.; Chen, T. Y.; Zuo, L. J.; Sun, Y. J.; Wang, R.; Xu, M. S. High performance IEICO-4F/WSe2 heterojunction photodetector based on photoluminescence quenching behavior. Nano Res. 2022, 15, 8595–8602.

[22]

Lee, J.; Ko, S. J.; Lee, H.; Huang, J. F.; Zhu, Z. Y.; Seifrid, M.; Vollbrecht, J.; Brus, V. V.; Karki, A.; Wang, H. B. et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett. 2019, 4, 1401–1409.

[23]

Bredas, J. L. Mind the gap! Mater. Horiz. 2014, 1, 17–19.

[24]

Du, X. Y.; Zhang, Q.; He, Z. Y.; Lin, H.; Yang, G.; Chen, Z. H.; Zheng, C. J.; Tao, S. L. Performance enhancement in organic solar cells and photodetectors enabled by donor phase optimization at the surface of hole transport layer. Chin. Chem. Lett. 2023, 34, 107641.

[25]

Wei, Z. X.; Zhao, Y. H.; Jiang, J.; Yan, W. B.; Feng, Y. Z.; Ma, J. M. Research progress on hybrid organic-inorganic perovskites for photo-applications. Chin. Chem. Lett. 2020, 31, 3055–3064.

[26]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[27]

He, Z. Y.; Han, J. Y.; Du, X. Y.; Cao, L. Y.; Wang, J.; Zheng, C. J.; Lin, H.; Tao, S. L. Photomemory and pulse monitoring featured solution-processed near-infrared graphene/organic phototransistor with detectivity of 2.4 × 1013 jones. Adv. Funct. Mater. 2021, 31, 2103988.

[28]

Li, D. W.; Du, J. Q.; Tang, Y. J.; Liang, K.; Wang, Y.; Ren, H. H.; Wang, R.; Meng, L.; Zhu, B. W.; Li, Y. F. Flexible and air-stable near-infrared sensors based on solution-processed inorganic–organic hybrid phototransistors. Adv. Funct. Mater. 2021, 31, 2105887.

[29]

Lin, R. X.; Wang, Y. R.; Lu, Q. W.; Tang, B. B.; Li, J. Y.; Gao, H.; Gao, Y.; Li, H. J.; Ding, C. Z.; Wen, J. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994–1000.

[30]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[31]

Chen, J. H.; Das, S.; Shao, M.; Li, G. L.; Lian, H. D.; Qin, J.; Browning, J. F.; Keum, J. K.; Uhrig, D.; Gu, G. et al. Phase segregation mechanisms of small molecule-polymer blends unraveled by varying polymer chain architecture. SmartMat 2021, 2, 367–377.

[32]

Yang, B.; Wang, Y.; Li, L.; Zhang, J. Y.; Wang, J. L.; Jiao, H. X.; Hao, D. D.; Guo, P.; Zeng, S.; Hua, Z. K. et al. High performance ternary organic phototransistors with photoresponse up to 2600 nm at room temperature. Adv. Funct. Mater. 2021, 31, 2103787.

[33]

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

[34]

Xi, J. B.; Xiao, J. W.; Xiao, F.; Jin, Y. X.; Dong, Y.; Jing, F.; Wang, S. Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci. Rep. 2016, 6, 21904.

[35]

Song, L. F.; Yang, L. P.; Wang, Z.; Liu, D.; Luo, L. Q.; Zhu, X. X.; Xi, Y.; Yang, Z. X.; Han, N.; Wang, F. Y. et al. One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuat. B: Chem. 2019, 283, 793–801.

[36]

Yurash, B.; Cao, D. X.; Brus, V. V.; Leifert, D.; Wang, M.; Dixon, A.; Seifrid, M.; Mansour, A. E.; Lungwitz, D.; Liu, T. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 2019, 18, 1327–1334.

[37]

Nguyen, L. H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch, G.; Sariciftci, N. S. Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2007, 17, 1071–1078.

[38]

Han, T.; Wang, Z. J.; Shen, N.; Zhou, Z. W.; Hou, X. H.; Ding, S. F.; Jiang, C. Z.; Huang, X. Y.; Zhang, X. F.; Liu, L. L. Diffusion interface layer controlling the acceptor phase of bilayer near-infrared polymer phototransistors with ultrahigh photosensitivity. Nat. Commun. 2022, 13, 1332.

[39]

Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

[40]

Xue, G. B.; Zhao, X. K.; Qu, G.; Xu, T. B.; Gumyusenge, A.; Zhang, Z. R.; Zhao, Y.; Diao, Y.; Li, H. Y.; Mei, J. G. Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films. ACS Appl. Mater. Interfaces 2017, 9, 25426–25433.

[41]

Zhao, X. K.; Xue, G. B.; Qu, G.; Singhania, V.; Zhao, Y.; Butrouna, K.; Gumyusenge, A.; Diao, Y.; Graham, K. R.; Li, H. Y. et al. Complementary semiconducting polymer blends: Influence of side chains of matrix polymers. Macromolecules 2017, 50, 6202–6209.

[42]

Iqbal, M. A.; Liaqat, A.; Hussain, S.; Wang, X. S.; Tahir, M.; Urooj, Z.; Xie, L. M. Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection. Adv. Mater. 2020, 32, 2002628.

[43]

Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

[44]

Shidachi, R.; Jinno, H.; Lee, S.; Yokota, T.; Someya, T. Suppressing dark current in organic phototransistors through modulating electron injection via a deep work function electrode. ACS Appl. Electron. Mater. 2019, 1, 1054–1058.

[45]

Jang, W.; Kim, B. G.; Seo, S.; Shawky, A.; Kim, M. S.; Kim, K.; Mikladal, B.; Kauppinen, E. I.; Maruyama, S.; Jeon, I. et al. Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today 2021, 37, 101081.

[46]

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

[47]

Guo, Y. L.; Du, C. Y.; Di, C. A.; Zheng, J.; Sun, X. N.; Wen, Y. G.; Zhang, L.; Wu, W. P.; Yu, G.; Liu, Y. Q. Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor. Appl. Phys. Lett. 2009, 94, 143303.

[48]

Chow, P. C. Y.; Matsuhisa, N.; Zalar, P.; Koizumi, M.; Yokota, T.; Someya, T. Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat. Commun. 2018, 9, 4546.

[49]

Zhao, Z. J.; Li, C. L.; Shen, L.; Zhang, X. L.; Zhang, F. J. Photomultiplication type organic photodetectors based on electron tunneling injection. Nanoscale 2020, 12, 1091–1099.

[50]

Du, B. C.; Yi, J. C.; Yan, H.; Wang, T. Temperature induced aggregation of organic semiconductors. Chem.—Eur. J. 2021, 27, 2908–2919.

[51]

Maturová, K.; van Bavel, S. S.; Wienk, M. M.; Janssen, R. A. J.; Kemerink, M. Description of the morphology dependent charge transport and performance of polymer: Fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 2011, 21, 261–269.

[52]

Cho, M. Y.; Kim, S. J.; Han, Y. D.; Park, D. H.; Kim, K. H.; Choi, D. H.; Joo, J. Highly sensitive, photocontrolled, organic thin-film transistors using soluble star-shaped conjugated molecules. Adv. Funct. Mater. 2008, 18, 2905–2912.

[53]

Chen, H. L.; Cheng, N. Y.; Ma, W.; Li, M. L.; Hu, S. X.; Gu, L.; Meng, S.; Guo, X. F. Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors. ACS Nano 2016, 10, 436–445.

[54]

Snyder, P. J.; Kirste, R.; Collazo, R.; Ivanisevic, A. Persistent photoconductivity, nanoscale topography, and chemical functionalization can collectively influence the behavior of PC12 cells on wide bandgap semiconductor surfaces. Small 2017, 13, 1700481.

[55]

Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199.

[56]

Nam, S.; Han, H.; Seo, J.; Song, M.; Kim, H.; Anthopoulos, T. D.; McCulloch, I.; Bradley, D. D. C.; Kim, Y. Ambipolar organic phototransistors with p-type/n-type conjugated polymer bulk heterojunction light-sensing layers. Adv. Electron. Mater. 2016, 2, 1600264.

[57]

Zhu, W. G.; Yi, Y. P.; Zhen, Y. G.; Hu, W. P. Precisely tailoring the stoichiometric stacking of perylene-TCNQ co-crystals towards different nano and microstructures with varied optoelectronic performances. Small 2015, 11, 2150–2156.

[58]

Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. N. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 2009, 131, 9396–9404.

[59]

Zhu, W. G.; Sun, Y. J.; Liu, J.; Bai, S. M.; Zhang, Z. C.; Shi, Q.; Hu, W. P.; Fu, H. B. Exciton transport in molecular semiconductor crystals for spin-optoelectronics paradigm. Chem.—Eur. J. 2021, 27, 222–227.

[60]

Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16, 4436–4451.

[61]

Kafourou, P.; Nugraha, M. I.; Nikitaras, A.; Tan, L. X.; Firdaus, Y.; Aniés, F.; Eisner, F.; Ding, B. W.; Wenzel, J.; Holicky, M. et al. Near-IR absorbing molecular semiconductors incorporating cyanated benzothiadiazole acceptors for high-performance semitransparent n-type organic field-effect transistors. ACS Mater. Lett. 2022, 4, 165–174.

[62]

Fu, B. B.; Sun, L. J.; Liu, L.; Ji, D. Y.; Zhang, X. T.; Yang, F. X.; Hu, W. P. Low-power high-mobility organic single-crystal field-effect transistor. Sci. China Mater. 2022, 65, 2779–2785.

[63]

Nam, S.; Seo, J.; Han, H.; Kim, H.; Bradley, D. D. C.; Kim, Y. Efficient deep red light-sensing all-polymer phototransistors with p-type/n-type conjugated polymer bulk heterojunction layers. ACS Appl. Mater. Interfaces 2017, 9, 14983–14989.

[64]

Kim, S.; Lee, D.; Lee, J.; Cho, Y.; Kang, S. H.; Choi, W.; Oh, J. H.; Yang, C. Diazapentalene-containing ultralow-band-gap copolymers for high-performance near-infrared organic phototransistors. Chem. Mater. 2021, 33, 7499–7508.

[65]

Han, J. Y.; Wang, J.; Yang, M.; Kong, X.; Chen, X. Q.; Huang, Z. H.; Guo, H.; Gou, J.; Tao, S. L.; Liu, Z. J. et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and Bi-directional photoresponse. Adv. Mater. 2018, 30, 1804020.

Nano Research
Pages 3087-3095
Cite this article:
Li J, Zhu W, Han Y, et al. Polymer: Non-fullerene acceptor heterojunction-based phototransistor for short-wave infrared photodetection. Nano Research, 2024, 17(4): 3087-3095. https://doi.org/10.1007/s12274-023-6175-z
Topics:

641

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 August 2023
Revised: 07 September 2023
Accepted: 07 September 2023
Published: 26 October 2023
© Tsinghua University Press 2023
Return