AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes

Lai-Peng Ma1,2,§Zhongbin Wu3,§Yukun Yan1,2,§Dingdong Zhang1,2Shichao Dong1,2Jinhong Du1,2Dongge Ma4Hui-Ming Cheng1,2,5Wencai Ren1,2( )
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an 710072, China
State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, China
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

§ Lai-Peng Ma, Zhongbin Wu, and Yukun Yan contributed equally to this work.

Show Author Information

Graphical Abstract

An aperiodic nanostructured dopant aci-nitromethane-tris(pentafluorophenyl) borane (ANBCF) was deposited on graphene flexible transparent electrode to simultaneously improve its light-extraction and hole injection. The use of ANBCF-doped graphene anode enables high-performance flexible green organic light-emitting diodes (OLEDs) with external quantum efficiency and power efficiency out-performing most flexible graphene OLEDs of comparable structure.

Abstract

Graphene-based flexible transparent electrodes (FTEs) are promising candidate materials for developing next-generation flexible organic light-emitting diodes (OLEDs). However, the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode. Here, we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE. A p-type dopant aci-nitromethane-tris(pentafluorophenyl) borane (ANBCF) was synthesized and deposited on graphene FTE to form an aperiodic nanostructure, which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection. The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency (EQE) and power efficiency (PE) out-performing most flexible graphene OLEDs of comparable structure. This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs.

Electronic Supplementary Material

Download File(s)
12274_2023_6176_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Zhang, D. D.; Huang, T. Y.; Duan, L. Emerging self-emissive technologies for flexible displays. Adv. Mater. 2020, 32, 1902391.

[2]

Adetayo, A. E.; Ahmed, T. N.; Zakhidov, A.; Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Adv. Opt. Mater. 2021, 9, 2002102.

[3]

Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105–110.

[4]

Li, N.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Sadana, D. K.; Chen, T. C. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes. Nat. Commun. 2013, 4, 2294.

[5]

Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chem., Int. Edit. 2016, 55, 6197–6201.

[6]

Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 2016, 8, 10714–10723.

[7]

Lee, J.; Han, T. H.; Park, M. H.; Jung, D. Y.; Seo, J.; Seo, H. K.; Cho, H.; Kim, E.; Chung, J.; Choi, S. Y. et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat. Commun. 2016, 7, 11791.

[8]

Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F. et al. Nickelocene-precursor-facilitated fast growth of graphene/h-BN vertical heterostructures and its applications in OLEDs. Adv. Mater. 2017, 29, 1701325.

[9]

Wu, T. L.; Yeh, C. H.; Hsiao, W. T.; Huang, P. Y.; Huang, M. J.; Chiang, Y. H.; Cheng, C. H.; Liu, R. S.; Chiu, P. W. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 2017, 9, 14998–15004.

[10]

Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.

[11]

Park, I. J.; Kim, T. I.; Yoon, T.; Kang, S. M.; Cho, H.; Cho, N. S.; Lee, J. I.; Kim, T. S.; Choi, S. Y. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1704435.

[12]

Ma, L. P.; Wu, Z. B.; Yin, L. C.; Zhang, D. D.; Dong, S. C.; Zhang, Q.; Chen, M. L.; Ma, W.; Zhang, Z. B.; Du, J. H. et al. Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proc. Natl. Acad. Sci. USA 2020, 117, 25991–25998.

[13]

Zhang, Z. K.; Xia, L. L.; Liu, L. Z.; Chen, Y. W.; Wang, Z. Z.; Wang, W.; Ma, D. G.; Liu, Z. P. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes. J. Mater. Chem. C 2021, 9, 2106–2114.

[14]

Gather, M. C.; Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J Photon. Energy 2015, 5, 057607.

[15]

Koo, W. H.; Jeong, S. M.; Araoka, F.; Ishikawa, K.; Nishimura, S.; Toyooka, T.; Takezoe, H. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photon. 2010, 4, 222–226.

[16]

Xiang, H. Y.; Li, Y. Q.; Meng, S. S.; Lee, C. S.; Chen, L. S.; Tang, J. X. Extremely efficient transparent flexible organic light-emitting diodes with nanostructured composite electrodes. Adv. Opt. Mater. 2018, 6, 1800831.

[17]

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

[18]

Ma, L. P.; Ren, W. C.; Cheng, H. M. Progress in surface charge transfer doping of graphene. Acta Phys. Chim. Sin. 2022, 38, 2012080.

[19]

Ownby, P. D. The boron trifluoride nitromethane adduct. J. Solid State Chem. 2004, 177, 466–470.

[20]

DePrince III, A. E.; Mazziotti, D. A. Isomerization of nitrosomethane to formaldoxime: Energies, geometries, and frequencies from the parametric variational two-electron reduced-density-matrix method. J. Chem. Phys. 2010, 133, 034112.

[21]

Maksyutenko, P.; Förstel, M.; Crandall, P.; Sun, B. J.; Wu, M. H.; Chang, A. H. H.; Kaiser, R. I. An isomer-specific study of solid nitromethane decomposition pathways-Detection of aci-nitromethane (H2CNO(OH)) and nitrosomethanol (HOCH2NO) intermediates. Chem. Phys. Lett. 2016, 658, 20–29.

[22]

Tran, S. D.; Tronic, T. A.; Kaminsky, W.; Heinekey, D. M.; Mayer, J. M. Metal-free carbon dioxide reduction and acidic C–H activations using a frustrated Lewis pair. Inorg. Chim. Acta 2011, 369, 126–132.

[23]

Güneş, F.; Shin, H. J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J. Y.; Lee, Y. H. Layer-by-layer doping of few-layer graphene film. ACS Nano 2010, 4, 4595–4600.

[24]

Kim, Y. H.; Lee, J.; Kim, W. M.; Fuchs, C.; Hofmann, S.; Chang, H. W.; Gather, M. C.; Müller-Meskamp, L.; Leo, K. We want our photons back: Simple nanostructures for white organic light-emitting diode outcoupling. Adv. Funct. Mater. 2014, 24, 2553–2559.

[25]

Kinoshita, H.; Jeon, I.; Maruyama, M.; Kawahara, K.; Terao, Y.; Ding, D.; Matsumoto, R.; Matsuo, Y.; Okada, S.; Ago, H. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation. Adv. Mater. 2017, 29, 1702141.

[26]

Seo, Y. M.; Cho, H. J.; Jang, H. S.; Jang, W.; Lim, J. Y.; Jang, Y.; Gu, T.; Choi, J. Y.; Whang, D. 2D Doping layer for flexible transparent conducting graphene electrodes with low sheet resistance and high stability. Adv. Electron. Mater. 2018, 4, 1700622.

[27]

Kang, J. W.; Jeong, W. I.; Kim, J. J.; Kim, H. K.; Kim, D. G.; Lee, G. H. High-performance flexible organic light-emitting diodes using amorphous indium zinc oxide anode. Electrochem. Solid-State Lett. 2007, 10, J75–J78.

[28]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[29]

Kwon, K. C.; Choi, K. S.; Kim, S. Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 2012, 22, 4724–4731.

[30]

Lee, B. H.; Lee, J. H.; Kahng, Y. H.; Kim, N.; Kim, Y. J.; Lee, J.; Lee, T.; Lee, K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Adv. Funct. Mater. 2014, 24, 1847–1856.

[31]

Kim, D.; Lee, D.; Lee, Y.; Jeon, D. Y. Work-function engineering of graphene anode by Bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 2013, 23, 5049–5055.

Nano Research
Pages 12788-12793
Cite this article:
Ma L-P, Wu Z, Yan Y, et al. Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes. Nano Research, 2023, 16(11): 12788-12793. https://doi.org/10.1007/s12274-023-6176-y
Topics:

657

Views

6

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 29 June 2023
Revised: 07 September 2023
Accepted: 10 September 2023
Published: 30 September 2023
© Tsinghua University Press 2023
Return