AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stabilizing high-efficiency iridium single atoms via lattice confinement for acidic oxygen evolution

Yibo Wang1,2,4,§Jiadong Jiang5,§Zhaoping Shi1,2,4Hongxiang Wu1,2,4Jiahao Yang1,2,4Pengbo Wang1,2,4Shuai Hou1Meiling Xiao1,2,3,4Junjie Ge1,2( )Changpeng Liu1,2,4( )Wei Xing1,2,3,4( )
Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, . China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, China

§ Yibo Wang and Jiadong Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

A lattice-confined strategy was reported to stabilize Ir single atom. The synthesized IrSAs-PdO exhibited superior activity and stability in a practical water electrolyzer even though the loading of Ir was as low as 60 µg·cm−2.

Abstract

Stable and efficient single atom catalysts (SACs) are highly desirable yet challenging in catalyzing acidic oxygen evolution reaction (OER). Herein, we report a novel iridium single atom catalyst structure, with atomic Ir doped in tetragonal PdO matrix (IrSAs-PdO) via a lattice-confined strategy. The optimized IrSAs-PdO-0.10 exhibited remarkable OER activity with an overpotential of 277 mV at 10 mA·cm−2 and long-term stability of 1000 h in 0.5 M H2SO4. Furthermore, the turnover frequency attains 1.6 s−1 at an overpotential of 300 mV with a 24-fold increase in the intrinsic activity. The high activity originates from isolated iridium sites with low valence states and decreased Ir–O bonding covalency, and the excellent stability is a result of the effective confinement of iridium sites by Ir–O–Pd motifs. Moreover, we demonstrated for the first time that SACs have great potential in realizing ultralow loading of iridium (as low as microgram per square center meter level) in a practical water electrolyzer.

Electronic Supplementary Material

Download File(s)
12274_2023_6177_MOESM1_ESM.pdf (3 MB)

References

[1]

Hu, L. Y.; Xiao, R. S.; Du, D.; Zhu, C. Z.; Lin, Y. H. Metal–organic framework-based electrocatalysts for acidic oxygen evolution reaction. Trends Chem. 2023, 5, 324–335.

[2]

Hu, S. Q.; Ge, S. Y.; Liu, H. M.; Kang, X.; Yu, Q. M.; Liu, B. L. Low-dimensional electrocatalysts for acidic oxygen evolution: Intrinsic activity, high current density operation, and long-term stability. Adv Funct. Mater. 2022, 32, 2201726.

[3]

Yu, H. R.; Danilovic, N.; Wang, Y.; Willis, W.; Poozhikunnath, A.; Bonville, L.; Capuano, C.; Ayers, K.; Maric, R. Nano-size IrO x catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B: Environ. 2018, 239, 133–146.

[4]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

[5]

Dong, S.; Zhang, C. Y.; Yue, Z. Y.; Zhang, F. R.; Zhao, H.; Cheng, Q. Q.; Wang, G. L.; Xu, J. F.; Chen, C.; Zou, Z. Q. et al. Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis. Nano Lett 2022, 22, 9434–9440.

[6]

Zhao, G. Q.; Luo, Z. X.; Zhang, B. H.; Chen, Y. P.; Cui, X. Z.; Chen, J.; Liu, Y. F.; Gao, M. X.; Pan, H. G.; Sun, W. P. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Res. 2023, 16, 4767–4774.

[7]

Minke, C.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis. Int. J. Hyd. Energy 2021, 46, 23581–23590.

[8]

Ni, J.; Shi, Z. P.; Wang, X.; Wang, Y. B.; Wu, H. X.; Liu, C. P.; Ge, J. J.; Xing, W. Recent development of low iridium electrocatalysts toward efficient water oxidation. J. Electrochem. 2022, 28, 2214010.

[9]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[10]

Li, G. Q.; Li, S. T.; Xiao, M. L.; Ge, J. J.; Liu, C. P.; Xing, W. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure. Nanoscale 2017, 9, 9291–9298.

[11]

Li, N.; Cai, L.; Wang, C.; Lin, Y.; Huang, J. Z.; Sheng, H. Y.; Pan, H. B.; Zhang, W.; Ji, Q. Q.; Duan, H. L. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 2021, 143, 18001–18009.

[12]

Wang, H. P.; Xu, Z. X.; Lin, W.; Yang, X.; Gu, X. R.; Zhu, W.; Zhuang, Z. B. Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants. Nano Res. 2023, 16, 420–426.

[13]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

[14]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[15]

Jia, C. X.; Qin, H.; Zhen, C.; Zhu, H. Z.; Yang, Y. Q.; Han, A.; Wang, L. Z.; Liu, G.; Cheng, H. M. Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Res. 2022, 15, 10014–10020.

[16]

Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K. L.; Chatzichristodoulou, C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2023, 13, 2203913.

[17]

Lebedev, D.; Ezhov, R.; Heras-Domingo, J.; Comas-Vives, A.; Kaeffer, N.; Willinger, M.; Solans-Monfort, X.; Huang, X.; Pushkar, Y.; Copéret, C. Atomically dispersed iridium on indium tin oxide efficiently catalyzes water oxidation. ACS Cent. Sci. 2020, 6, 1189–1198.

[18]

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

[19]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[20]

Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

[21]

Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

[22]

Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K. et al. Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 2021, 6, 1588–1595.

[23]

Zlatar, M.; Nater, D.; Escalera-López, D.; Joy, R. M.; Pobedinskas, P.; Haenen, K.; Copéret, C.; Cherevko, S. Evaluating the stability of Ir single atom and Ru atomic cluster oxygen evolution reaction electrocatalysts. Electrochim. Acta 2023, 444, 141982.

[24]

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z. Z.; Oellers, T.; Fruchter, L. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508–515.

[25]

Wang, Y. B.; Ma, R. P.; Shi, Z. P.; Wu, H. X.; Hou, S.; Wang, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Inverse doping IrO x /Ti with weakened Ir–O interaction toward stable and efficient acidic oxygen evolution. Chem 2023, 9, 2931–2942.

[26]
Ni, J.; Shi, Z. P.; Wang, Y. B.; Yang, J. H.; Wu, H. X.; Wang, P. B.; Li, K.; Xiao, M. L.; Liu, C. P.; Xing, W. Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation. Nano Res., in press, DOI: 10.1007/s12274-023-5913-6.
[27]

Lončar, A.; Escalera-López, D.; Cherevko, S.; Hodnik, N. Inter-relationships between oxygen evolution and iridium dissolution mechanisms. Angew. Chem., Int. Ed. 2022, 61, e202114437.

[28]

Kasian, O.; Grote, J. P.; Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem., Int. Ed. 2018, 57, 2488–2491.

[29]

Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E. et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoO x nanosheets. ACS Catal. 2021, 11, 123–130.

[30]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[31]

Sun, Y. M.; Liao, H. B.; Wang, J. R.; Chen, B.; Sun, S. N.; Ong, S. J. H.; Xi, S. B.; Diao, C. Z.; Du, Y. H.; Wang, J. O. et al. Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides. Nat. Catal. 2020, 3, 554–563.

[32]

Wang, L.; Ji, B. F.; Zheng, Y. P.; Tang, Y. B. Asymmetric coordination of iridium single-atom IrN3O boosting formic acid oxidation catalysis. Angew. Chem., Int. Ed. 2023, 62, e202301711.

[33]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[34]

Zhao, Z. Y.; Elwood, J.; Carpenter, M. A. Phonon anharmonicity of PdO studied by Raman spectrometry. J. Phys. Chem. C 2015, 119, 23094–23102.

[35]

Shi, Z. P.; Li, J.; Jiang, J. D.; Wang, Y. B.; Wang, X.; Li, Y.; Yang, L. T.; Chu, Y. Y.; Bai, J. S.; Yang, J. H. et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5− x catalyst/support interfaces. Angew. Chem., Int. Ed. 2022, 61, e202212341.

Nano Research
Pages 2492-2498
Cite this article:
Wang Y, Jiang J, Shi Z, et al. Stabilizing high-efficiency iridium single atoms via lattice confinement for acidic oxygen evolution. Nano Research, 2024, 17(4): 2492-2498. https://doi.org/10.1007/s12274-023-6177-x
Topics:

675

Views

5

Crossref

4

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 11 July 2023
Revised: 29 August 2023
Accepted: 10 September 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return