Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lithium metal batteries (LMBs) have been extensively investigated during the past decades because of their ultrahigh energy densities. With the increasing demand for energy density, however, the safety issue of LMBs has become a significant challenge. In particular, localized areas of increased temperature (namely, hotspots) may be induced and even exacerbated within LMBs by uneven current distribution, internal short circuits, or inadequate heat dissipation, which significantly sacrifices battery safety and cycle life. Here, we report the rational design and fabrication of a fast thermal responsive separator capable of inhibiting the growth of lithium dendrites and mitigating thermal propagation, thereby reducing the risk of thermal runaway. The as-achieved separator comprises both an electrospun membrane using a phase change material with superior thermal-storage ability and a thermally conductive modification layer of hexagonal boron nitride nanosheets with a fast heat-transfer feature. It is demonstrated that such a unique integration of heat conduction and heat storage enables the functional separator with attractive abilities to mitigate hotspots and inhibit the growth of lithium dendrites upon the cycling of LMBs. Moreover, pouch cells with the thermal-responsive separator, as well as numerical simulations, verify much enhanced safety and cycle life of LMBs. This work may offer a new conceptual design of intelligent separators that acts as a functional unit encapsulated within a single cell to boost in-situ thermal management, which will help to develop high-safety and energy-dense LMBs.
Cavers, H.; Molaiyan, P.; Abdollahifar, M.; Lassi, U.; Kwade, A. Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region. Adv. Energy Mater. 2022, 12, 2200147.
Wang, K.; Zhuo, H. X.; Wang, J. T.; Poon, F.; Sun, X. L.; Xiao, B. W. Recent advances in Mn-rich layered materials for sodium-ion batteries. Adv. Funct. Mater. 2023, 33, 2212607.
Wang, C. H.; Kim, J. T.; Wang, C. S.; Sun, X. L. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater. 2023, 35, e2209074.
Wang, S.; Wu, Y. J.; Li, H.; Chen, L. Q.; Wu, F. Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm. InfoMat 2022, 4, e12316.
Chen, Z.; Wang, K. L.; Pei, P. C.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Zhang, P. F.; Shang, N. Advances in electrolyte safety and stability of ion batteries under extreme conditions. Nano Res. 2023, 16, 2311–2324.
Shen, Y. B.; Wu, Y. Q.; Zhang, D. Y.; Liang, Y.; Yin, D. M.; Wang, L. M.; Wang, L. C.; Cao, J. C.; Cheng, Y. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Res. 2023, 16, 5973–5982.
Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite Formation. Joule 2020, 4, 1864–1879.
Luo, J.; Zou, D. Q.; Wang, Y. S.; Wang, S.; Huang, L. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem. Eng. J. 2022, 430, 132741.
Wang, Z. C.; Du, C. Q. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable Sustainable Energy Rev. 2021, 139, 110685.
Zhao, Y.; Patel, Y.; Zhang, T.; Offer, G. J. Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance. J. Electrochem. Soc. 2018, 165, A3169–A3178.
Qureshi, Z. A.; Ali, H. M.; Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transfer 2018, 127, 838–856.
Fear, C.; Parmananda, M.; Kabra, V.; Carter, R.; Love, C. T.; Mukherjee, P. P. Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating. Energy Storage Mater. 2021, 35, 500–511.
Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 2019, 10, 2067.
Zhou, J. Q.; Huan, Y. F.; Zhang, L. F.; Wang, Z. K.; Zhou, X.; Liu, J.; Shen, X. W.; Hu, L. P.; Qian, T.; Yan, C. L. Critical perspective on smart thermally self-protective lithium batteries. Mater. Today 2022, 60, 271–286.
Chen, S. C.; Wang, Y. Y.; Wan, C. C. Thermal analysis of spirally wound lithium batteries. J. Electrochem. Soc. 2006, 153, A637.
Zeng, Y. Q.; Chalise, D.; Lubner, S. D.; Kaur, S.; Prasher, R. S. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging. Energy Storage Mater. 2021, 41, 264–288.
Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015, 15, 6149–6154.
Liu, Y.; Qiao, Y.; Zhang, Y.; Yang, Z.; Gao, T. T.; Kirsch, D.; Liu, B. Y.; Song, J. W.; Yang, B.; Hu, L. B. 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Mater. 2018, 12, 197–203.
Liu, J. D.; Cao, D. L.; Yao, H. J.; Liu, D. Q.; Zhang, X. D.; Zhang, Q. Z.; Chen, L. J.; Wu, S. H.; Sun, Y. M.; He, D. Y. et al. Hexagonal boron nitride-coated polyimide ion track etched separator with enhanced thermal conductivity and high-temperature stability for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 8639–8649.
Liao, C.; Wang, W.; Wang, J. L.; Han, L. F.; Qiu, S. L.; Song, L.; Gui, Z.; Kan, Y. C.; Hu, Y. Magnetron sputtering deposition of silicon nitride on polyimide separator for high-temperature lithium-ion batteries. J. Energy Chem. 2021, 56, 1–10.
Guo, Y.; Wu, Q.; Liu, L. W.; Li, G. C.; Yang, L. J.; Wang, X. Z.; Ma, Y. W.; Hu, Z. Thermally conductive AlN-network shield for separators to achieve dendrite-free plating and fast Li-ion transport toward durable and high-rate lithium-metal anodes. Adv. Sci. 2022, 9, 2200411.
Zuo, L. L.; Ma, Q.; Li, S. C.; Lin, B. C.; Fan, M.; Meng, Q. H.; Wu, X. W.; Guo, Y. G.; Zeng, X. X. Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003285.
Huang, X. Y.; Xue, J. J.; Xiao, M.; Wang, S. J.; Li, Y. N.; Zhang, S. C.; Meng, Y. Z. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells. Energy Storage Mater. 2020, 30, 87–97.
Liu, Z. F.; Hu, Q. M.; Guo, S. T.; Yu, L.; Hu, X. L. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries. Adv. Mater. 2021, 33, 2008088.
Cheng, P.; Chen, X.; Gao, H. Y.; Zhang, X. W.; Tang, Z. D.; Li, A.; Wang, G. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy 2021, 85, 105948.
Wu, Y.; Chen, C. Z.; Jia, Y. F.; Wu, J.; Huang, Y.; Wang, L. G. Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl. Energy 2018, 210, 167–181.
Lin, Y.; Connell, J. W. Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 2012, 4, 6908–6939.
Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L. et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.
Hou, J.; Li, G. H.; Yang, N.; Qin, L. L.; Grami, M. E.; Zhang, Q. X.; Wang, N. Y.; Qu, X. W. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282–44290.
Liu, M.; Zhang, S. T.; Li, G. Q.; Wang, C.; Li, B.; Li, M.; Wang, Y.; Ming, H.; Wen, Y. H.; Qiu, J. Y. et al. A cross-linked gel polymer electrolyte employing cellulose acetate matrix and layered boron nitride filler prepared via in situ thermal polymerization. J. Power Sources 2021, 484, 229235.
Vishwakarma, V.; Jain, A. Measurement of in-plane thermal conductivity and heat capacity of separator in Li-ion cells using a transient DC heating method. J. Power Sources 2014, 272, 378–385.
Yang, Y.; Huang, X. P.; Cao, Z. Y.; Chen, G. Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy 2016, 22, 301–309.
Richter, F.; Kjelstrup, S.; Vie, P. J. S.; Burheim, O. S. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J. Power Sources 2017, 359, 592–600.
Liu, R.; Chen, J. X.; Xun, J. Z.; Jiao, K.; Du, Q. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Appl. Energy 2014, 132, 288–297.
Chen, Z. H.; Liu, J.; Amine, K. Lithium difluoro(oxalato)borate as salt for lithium-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A45.
Feng, X. N.; Zheng, S. Q.; Ren, D. S.; He, X. M.; Wang, L.; Liu, X.; Li, M. G.; Ouyang, M. G. Key characteristics for thermal runaway of Li-ion batteries. Energy Procedia 2019, 158, 4684–4689.
Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.
Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.
Li, J. W.; Kong, Z.; Liu, X. X.; Zheng, B. C.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K. L.; Xu, H.; Jin, H. Strategies to anode protection in lithium metal battery: A review. InfoMat 2021, 3, 1333–1363.
Han, D. Z.; Wang, X. W.; Zhou, Y. N.; Zhang, J. Y.; Liu, Z. X.; Xiao, Z. C.; Zhou, J. Q.; Wang, Z.; Zheng, J. F.; Jia, Z. H. et al. A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling. Adv. Energy Mater. 2022, 12, 2201190.
Chen, R. J.; Cui, Y. L.; Tian, H.; Yao, R. M.; Liu, Z. P.; Shu, Y.; Li, C.; Yang, Y.; Ren, T. L.; Zhang, G. et al. Controllable thermal rectification realized in binary phase change composites. Sci. Rep. 2015, 5, 8884.
Sheng, J. Z.; Zhang, Q.; Liu, M. S.; Han, Z. Y.; Li, C.; Sun, C. B.; Chen, B.; Zhong, X. W.; Qiu, L.; Zhou, G. M. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries. Nano Lett. 2021, 21, 8447–8454.
Li, Y. J.; Gao, T. T.; Ni, D. Y.; Zhou, Y.; Yousaf, M.; Guo, Z. Q.; Zhou, J. H.; Zhou, P.; Wang, Q.; Guo, S. J. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107638.
Zhang, T. W.; Zhang, J.; Yang, S.; Li, Y.; Dong, R.; Yuan, J. L.; Liu, Y. X.; Wu, Z. G.; Song, Y.; Zhong, Y. J. et al. Facile in situ chemical cross-linking gel polymer electrolyte, which confines the shuttle effect with high ionic conductivity and Li-ion transference number for quasi-solid-state lithium-sulfur battery. ACS Appl. Mater. Interfaces 2021, 13, 44497–44508.
Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.
Cheng, M.; Ramasubramanian, A.; Rasul, M. G.; Jiang, Y. Z.; Yuan, Y. F.; Foroozan, T.; Deivanayagam, R.; Saray, M. T.; Rojaee, R.; Song, B. A. et al. Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Adv. Funct. Mater. 2021, 31, 2006683.
Xu, W. J.; Hu, P. Numerical study on thermal behavior and a liquid cooling strategy for lithium-ion battery. Int. J. Energy Res. 2020, 44, 7645–7659.