AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Substrate screening for superclean graphene growth using first-principles calculations

Zhihao Li1,2Xiucai Sun2,3Xiaoli Sun2Wan-Jian Yin1,2( )Zhongfan Liu2,3( )
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
Graphene Basic Science Research Center, Beijing Graphene Institute (BGI), Beijing 100095, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Improving the surface cleanliness and overall quality of finished product prepared by chemical vapor deposition (CVD) graphene growth are issues that researchers have striven to understand and address. Understanding the fundamental mechanism associated with contaminant generation and developing corresponding means of suppression are practically significant for improving graphene quality.

Abstract

Suppressing the formation of amorphous surface carbon and contaminants during the preparation of graphene by chemical vapor deposition remains an ongoing issue. Herein, we analyzed how substrate characteristics affect graphene quality by simulating margin extension, the nucleation process, and defect pegging configurations on mono-crystalline oriented metal substrates with the aim of enhancing graphene cleanliness. Defect formation energy and nucleation potential, which are indirect substrate–graphene interaction features, were found to appropriately evaluate graphene quality. The crystallographic orientation of the metal substrate was discovered to be critical for producing superclean graphene. A low graphene defect density and high nucleation rate on the Cu (100) facet guarantee growth of high-quality graphene, especially in terms of suppressing the formation of amorphous carbon. In addition, rapid kink growth and self-healing on the Cu (100) facet facilitate rapid graphene synthesis, which is also promoted by rapid kink splicing and margin self-repair on this facet. This study provides theoretical insight useful for the synthesis of superclean graphene.

Electronic Supplementary Material

Download File(s)
12274_2023_6193_MOESM1_ESM.pdf (785.8 KB)

References

[1]

Chen, X. P.; Zhang, L. L.; Chen, S. S. Large area CVD growth of graphene. Synth. Met. 2015, 210, 95–108.

[2]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

[3]

Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

[4]

Cabrero-Vilatela, A.; Weatherup, R. S.; Braeuninger-Weimer, P.; Caneva, S.; Hofmann, S. Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 2016, 8, 2149–2158.

[5]

Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261–482.

[6]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[7]

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

[8]

Gong, C. H.; Hu, K.; Wang, X. P.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Liao, M.; Dai, L. P.; Zhai, T. Y.; Wang, C. et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv. Funct. Mater. 2018, 28, 1706559.

[9]

Li, J. Z.; Chen, M. G.; Samad, A.; Dong, H. C.; Ray, A.; Zhang, J. W.; Jiang, X. C.; Schwingenschlögl, U.; Domke, J.; Chen, C. L. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 2022, 21, 740–747.

[10]

Chen, Z. L.; Xie, C. Y.; Wang, W. D.; Zhao, J. P.; Liu, B. Y.; Shan, J. Y.; Wang, X. Y.; Hong, M.; Lin, L.; Huang, L. et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. 2021, 7, eabk0115.

[11]

Tai, L. X.; Zhu, D. M.; Liu, X.; Yang, T. Y.; Wang, L.; Wang, R.; Jiang, S.; Chen, Z. H.; Xu, Z. M.; Li, X. L. Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett. 2018, 10, 20.

[12]

Filintoglou, K.; Papadopoulos, N.; Arvanitidis, J.; Christofilos, D.; Frank, O.; Kalbac, M.; Parthenios, J.; Kalosakas, G.; Galiotis, C.; Papagelis, K. Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Phys. Rev. B 2013, 88, 045418.

[13]

Yuan, Q. H.; Song, G. Y.; Sun, D. Y.; Ding, F. Formation of graphene grain boundaries on Cu (100) surface and a route towards their elimination in chemical vapor deposition growth. Sci. Rep. 2014, 4, 6541.

[14]

Zhang, L. N.; Peng, P.; Ding, F. Epitaxial growth of 2D materials on high-index substrate surfaces. Adv. Funct. Mater. 2021, 31, 2100503.

[15]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat Commun 2019, 10, 1912.

[16]

Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T. et al. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem. 2020, 132, 17367–17371.

[17]

Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

[18]

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

[19]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[20]

Cortijo, A.; Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 2007, 763, 293–308.

[21]

Li, Y. L. Z.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y. et al. Large single-crystal Cu foils with high-index facets by strain-engineered anomalous grain growth. Adv. Mater. 2020, 32, 2002034.

[22]

Murdock, A. T.; Koos, A.; Britton, T. B.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

[23]

Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

[24]

Huang, M.; Deng, B. W.; Dong, F.; Zhang, L. L.; Zhang, Z. Y.; Chen, P. Substrate engineering for CVD growth of single crystal graphene. Small Methods 2021, 5, 2001213.

[25]

Lee, H. C.; Liu, W. W., Chai, S. P., Mohamed, A. R.; Aziz, A.; Khe, C. S., Hidayah, N. M. S.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693.

[26]

Lu, W. J.; Zeng, M. Q.; Li, X. S.; Wang, J.; Tan, L. F.; Shao, M. M.; Han, J. L.; Wang, S.; Yue, S. L.; Zhang, T. et al. Controllable sliding transfer of wafer-size graphene. Adv. Sci. 2016, 3, 1600006.

[27]

Zhang, J. C.; Lin, L.; Sun, L. Z.; Huang, Y. C.; Koh, A. L.; Dang, W. H.; Yin, J. B.; Wang, M. Z.; Tan, C. W.; Li, T. R. et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017, 29, 1700639.

[28]

Li, P.; Li, Z. Y.; Yang, J. L. Dominant kinetic pathways of graphene growth in chemical vapor deposition: The role of hydrogen. J. Phys. Chem. C 2017, 121, 25949–25955.

[29]

Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011, 13, 20836–20843.

[30]

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

[31]

Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Nieminen, R. M. Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 2006, 418, 132–136.

[32]

Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 2005, 72, 184109.

[33]

Lusk, M. T.; Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 2008, 100, 175503.

[34]

Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

[35]

Lee, H. C.; Bong, H.; Yoo, M. S.; Jo, M.; Cho, K. Copper-vapor-assisted growth and defect-healing of graphene on copper surfaces. Small 2018, 14, 1801181.

[36]

Lin, H. C.; Chen, Y. Z.; Wang, Y. C.; Chueh, Y. L. The essential role of Cu vapor for the self-limit graphene via the Cu catalytic CVD method. J. Phys. Chem. C 2015, 119, 6835–6842.

[37]

Kim, Y.; Ihm, J.; Yoon, E.; Lee, G. D. Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 2011, 84, 075445.

[38]

Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. 2019, 131, 3899–39904.

[39]

Chen, S. D.; Bai, Q. S.; Wang, H. F.; Dou, Y. H.; Guo, W. M. Controlled growth of large-area monolayer graphene on Ni (110) facet: Insight from molecular dynamics simulation. Phys. E:Low-Dimens. Syst. Nanostruct. 2022, 144, 115465.

[40]

Sun, X. C.; Luo, X. Y.; Su, Z.; Yu, F. P.; Li, Y. L.; Cheng, X. F.; Zhao, X. Effect of BN seeds on locating and promoting the initial nucleation of graphene on Cu substrate and its mechanism: A theoretical study. Appl. Surf. Sci. 2020, 523, 146469.

[41]

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

[42]

Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 2015, 114, 216102.

[43]

Dong, J. C.; Zhang, L. N.; Dai, X. Y.; Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 2020, 11, 5862.

[44]

Page, A. J.; Wang, Y.; Li, H. B.; Irle, S.; Morokuma, K. Nucleation of graphene precursors on transition metal surfaces: Insights from theoretical simulations. J. Phys. Chem. C 2013, 117, 14858–14864.

[45]

Li, H. B.; Page, A. J.; Hettich, C.; Aradi, B.; Köhler, C.; Frauenheim, T.; Irle, S.; Morokuma, K. Graphene nucleation on a surface-molten copper catalyst: Quantum chemical molecular dynamics simulations. Chem. Sci. 2014, 5, 3493–3500.

[46]

Wang, H. Y.; Li, H. B.; Lin, N.; Wang, J. J.; Xu, R.; Zhao, X. Morphology effects of graphene seeds on the quality of graphene nucleation: Quantum chemical molecular dynamics simulations. J. Phys. Chem. C 2021, 125, 5056–5065.

[47]

Wang, Y.; Page, A. J.; Nishimoto, Y.; Qian, H. J.; Morokuma, K.; Irle, S. Template effect in the competition between haeckelite and graphene growth on Ni (111): Quantum chemical molecular dynamics simulations. J. Am. Chem. Soc. 2011, 133, 18837–18842.

[48]

Zhang, X. Y.; Ding, F. The magic-sized carbon clusters on the transition metal surfaces with a four-fold symmetry. Carbon 2020, 156, 282–286.

[49]

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

[50]

Wang, L.; Gao, J. F.; Ding, F. Application of crystal growth theory in graphene CVD nucleation and growth. Acta Chim. Sin. 2014, 72, 345–358.

[51]

Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919–18926.

[52]

Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

Nano Research
Pages 2216-2222
Cite this article:
Li Z, Sun X, Sun X, et al. Substrate screening for superclean graphene growth using first-principles calculations. Nano Research, 2024, 17(4): 2216-2222. https://doi.org/10.1007/s12274-023-6193-x
Topics:

943

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 06 June 2023
Revised: 04 September 2023
Accepted: 12 September 2023
Published: 09 November 2023
© Tsinghua University Press 2023
Return