AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced exciton diffusion from interlayer charge-transfer transitions in PtSe2/MoSe2 van der Waals heterojunction

Jiarong Wang1Dawei He1Zhiying Bai1Guili Li1Jinxuan Bai1Keqin Liu2Fangying Ren1Xiaojing Liu1Jiaqi He6Weiya Zhou7,8Jianlin Sun7,8Yongsheng Wang1( )Xiaoxian Zhang1( )Yuchao Yang2,3,4,5( )
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing 102206, China
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Combining pump-probe spectroscopy and scanning probe microscopy, we systematically investigated the intrinsic optical and electrical properties of the PtSe2/MoSe2 heterojunction.

Abstract

Artificial van der Waals (vdWs) heterostructures offer unprecedented opportunities to explore and reveal novel synergistic electronic and optical phenomena, which are beneficial for the development of novel optoelectronic devices at atomic limits. However, due to the damage caused by the device fabrication process, their inherent properties such as carrier mobility are obscured, which hinders the improvement of device performance and the incorporation of vdWs materials into next-generation integrated circuits. Herein, combining pump-probe spectroscopic and scanning probe microscopic techniques, the intrinsic optoelectronic properties of PtSe2/MoSe2 heterojunction were nondestructively and systematically investigated. The heterojunction exhibits a broad-spectrum optical response and maintains ultrafast carrier dynamics (interfacial charge transfer ~ 0.8 ps and carrier lifetime ~ 38.2 ps) simultaneously. The in-plane exciton diffusion coefficient of the heterojunction was extracted (19.4 ± 7.6 cm2∙s−1), and its exciton mobility as high as 756.8 cm2∙V−1∙s−1 was deduced, exceeding the value of its components. This enhancement was attributed to the formation of an n-type Schottky junction between PtSe2 and MoSe2, and its built-in electric field assisted the ultrafast transfer of photogenerated carriers from MoSe2 to PtSe2, enhancing the in-plane exciton diffusion of the heterojunction. Our results demonstrate that PtSe2/MoSe2 is suitable for the development of broad-spectrum and sensitive optoelectronic devices. Meanwhile, the results contribute to a fundamental understanding of the performance of various optoelectronic devices based on such PtSe2 two-dimensional (2D) heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2023_6195_MOESM1_ESM.pdf (4.4 MB)

References

[1]

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

[2]

Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.

[3]

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.

[4]

Guo, W. L.; Dong, Z.; Xu, Y. J.; Liu, C. L.; Wei, D. C.; Zhang, L. B.; Shi, X. Y.; Guo, C.; Xu, H.; Chen, G. et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 2020, 7, 1902699.

[5]

Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

[6]

Chung, C. C.; Yeh, H.; Wu, P. H.; Lin, C. C.; Li, C. S.; Yeh, T. T.; Chou, Y.; Wei, C. Y.; Wen, C. Y.; Chou, Y. C. et al. Atomic-layer controlled interfacial band engineering at two-dimensional layered PtSe2/Si heterojunctions for efficient photoelectrochemical hydrogen production. ACS Nano 2021, 15, 4627–4635.

[7]

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

[8]

Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

[9]

Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

[10]

Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031.

[11]

Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

[12]

Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

[13]

Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

[14]

Chen, X.; Zhang, S. F.; Wang, L.; Huang, Y. F.; Liu, H. Y.; Huang, J. W.; Dong, N. N.; Liu, W. M.; Kislyakov, I. M.; Nunzi, J. M. et al. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 2019, 7, 1416–1424.

[15]

Seo, S. B.; Nah, S.; Song, J. C.; Sim, S. Anomalous oscillating behavior of ultrafast spatiotemporal hot carrier diffusion in two-dimensional PtSe2. ACS Photonics 2022, 9, 1783–1792.

[16]

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

[17]

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

[18]

Wang, P. Z.; He, D. W.; Wang, Y. S.; Zhang, X. X.; He, J. Q.; Zhao, H. Fast exciton diffusion in monolayer PtSe2. Laser Photonics Rev. 2022, 16, 2100594.

[19]

Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

[20]

Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

[21]

Jo, J.; Kim, J. H.; Kim, C. H.; Lee, J.; Choe, D.; Oh, I.; Lee, S.; Lee, Z.; Jin, H.; Yoo, J. W. Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers. Nat. Commun. 2022, 13, 2759.

[22]

Avsar, A.; Cheon, C. Y.; Pizzochero, M.; Tripathi, M.; Ciarrocchi, A.; Yazyev, O. V.; Kis, A. Probing magnetism in atomically thin semiconducting PtSe2. Nat. Commun. 2020, 11, 4806.

[23]

Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919.

[24]

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

[25]

Li, J. F.; Kolekar, S.; Ghorbani-Asl, M.; Lehnert, T.; Biskupek, J.; Kaiser, U.; Krasheninnikov, A. V.; Batzill, M. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano 2021, 15, 13249–13259.

[26]

Grillo, A.; Faella, E.; Pelella, A.; Giubileo, F.; Ansari, L.; Gity, F.; Hurley, P. K.; McEvoy, N.; Di Bartolomeo, A. Coexistence of negative and positive photoconductivity in few-layer PtSe2 field-effect transistors. Adv. Funct. Mater. 2021, 31, 2105722.

[27]

Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.

[28]

Song, Y.; Li, M.; Chen, J. W.; Du, Y. C.; Qin, Q. G.; Du, Z. Y.; Zou, F. X.; Ma, X. F.; Li, L.; Li, G. H. High-performance photodetector based on the ReSe2/PtSe2 van der Waals heterojunction. ACS Appl. Electron. Mater. 2023, 5, 2748–2757.

[29]

Sefidmooye Azar, N.; Bullock, J.; Shrestha, V. R.; Balendhran, S.; Yan, W.; Kim, H.; Javey, A.; Crozier, K. B. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano 2021, 15, 6573–6581.

[30]

Lian, Y. L.; Han, J. Y.; Yang, M.; Peng, S. L.; Zhang, C. Y.; Han, C.; Zhang, X. C.; Liu, X. C.; Zhou, H. X.; Wang, Y. et al. Tunable Bi-directional photoresponse in hybrid PtSe2− x thin films based on precisely controllable selenization engineering. Adv. Funct. Mater. 2022, 32, 2205709.

[31]

Mahmood, F.; Alpichshev, Z.; Lee, Y. H.; Kong, J.; Gedik, N. Observation of exciton–exciton interaction mediated valley depolarization in monolayer MoSe2. Nano Lett. 2018, 18, 223–228.

[32]

Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

[33]

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; Da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

[34]

Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

[35]

Zhou, H. J.; Li, Y.; Miao, X. S. Low-time-complexity document clustering using memristive dot product engine. Sci. China Inf. Sci. 2022, 65, 122410.

[36]

Mannocci, P.; Farronato, M.; Lepri, N.; Cattaneo, L.; Glukhov, A.; Sun, Z.; Ielmini, D. In-memory computing with emerging memory devices: Status and outlook. APL Mach. Learn. 2023, 1, 010902.

[37]

Zhu, Y.; He, Y. L.; Chen, C. S.; Zhu, L.; Wan, C. J.; Wan, Q. IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci. China Inf. Sci. 2022, 65, 162401.

[38]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

[39]

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

[40]

Shen, T. Y.; Zhan, Y. Q.; Shi, L. Time-resolved spectroscopy for the study of perovskite. Chin. J. Electron. 2022, 31, 1053–1071.

[41]

Jiang, Y. P.; Qi, Q.; Wang, R.; Zhang, J.; Xue, Q. K.; Wang, C.; Jiang, C.; Qiu, X. H. Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate. ACS Nano 2011, 5, 6195–6201.

[42]

Qiu, W. T.; Liang, W. Z.; Guo, J.; Fang, L. M.; Li, N.; Feng, Q. G.; Luo, S. N. Thickness-dependent ultrafast hot carrier and phonon dynamics of PtSe2 films measured with femtosecond transient optical spectroscopy. J. Phys. D: Appl. Phys. 2021, 54, 075102.

[43]

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

[44]

Rigosi, A. F.; Hill, H. M.; Li, Y. L.; Chernikov, A.; Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 2015, 15, 5033–5038.

[45]

Xie, J. F.; Zhang, D.; Yan, X. Q.; Ren, M. X.; Zhao, X.; Liu, F.; Sun, R. X.; Li, X. K.; Li, Z.; Chen, S. Q. et al. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 2019, 6, 035011.

[46]

Bae, S.; Nah, S.; Lee, D.; Sajjad, M.; Singh, N.; Kang, K. M.; Kim, S.; Kim, G. J.; Kim, J.; Baik, H. et al. Exciton-dominated ultrafast optical response in atomically thin PtSe2. Small 2021, 17, 2103400.

[47]

Fu, J. B.; Xu, W. Q.; Chen, X.; Zhang, S. F.; Zhang, W. J.; Suo, P.; Lin, X.; Wang, J.; Jin, Z. M.; Liu, W. M. et al. Thickness-dependent ultrafast photocarrier dynamics in selenizing platinum thin films. J. Phys. Chem. C 2020, 124, 10719–10726.

[48]

Ding, J. W.; Fu, S. H.; Hu, K.; Zhang, G. J.; Liu, M. X.; Zhang, X. X.; Wang, R.; Qiu, X. H. Efficient hot electron capture in CuPc/MoSe2 heterostructure assisted by intersystem crossing. Nano Lett. 2022, 22, 8463–8469.

[49]

Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

[50]

Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; Jin, C. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020–12026.

[51]

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

[52]

Smith, L. M.; Wake, D. R.; Wolfe, J. P.; Levi, D.; Klein, M. V.; Klem, J.; Henderson, T.; Morkoç, H. Picosecond imaging of photoexcited carriers in quantum wells: Anomalous lateral confinement at high densities. Phys. Rev. B 1988, 38, 5788–5791.

[53]

Kumar, N.; Cui, Q. N.; Ceballos, F.; He, D. W.; Wang, Y. S.; Zhao, H. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 2014, 6, 4915–4919.

[54]

Wang, P. Z.; He, D. W.; Wang, Y. S.; Zhang, X. X.; He, X. Y.; He, J. Q.; Zhao, H. Ultrafast interlayer charge transfer between bilayer PtSe2 and monolayer WS2. ACS Appl. Mater. Interfaces 2021, 13, 57822–57830.

[55]

Uddin, S. Z.; Kim, H.; Lorenzon, M.; Yeh, M.; Lien, D. H.; Barnard, E. S.; Htoon, H.; Weber-Bargioni, A.; Javey, A. Neutral exciton diffusion in monolayer MoS2. ACS Nano 2020, 14, 13433–13440.

[56]

He, J. Q.; He, D. W.; Wang, Y. S.; Cui, Q. N.; Ceballos, F.; Zhao, H. Spatiotemporal dynamics of excitons in monolayer and bulk WS2. Nanoscale 2015, 7, 9526–9531.

[57]

Bian, A.; He, D. W.; Hao, S. C.; Fu, Y.; Zhang, L.; He, J. Q.; Wang, Y. S.; Zhao, H. Dynamics of charge-transfer excitons in a transition metal dichalcogenide heterostructure. Nanoscale 2020, 12, 8485–8492.

[58]

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 2015, 7, 17523–17528.

[59]

Cadena, M. J.; Sung, S. H.; Boudouris, B. W.; Reifenberger, R.; Raman, A. Nanoscale mapping of dielectric properties of nanomaterials from kilohertz to megahertz using ultrasmall cantilevers. ACS Nano 2016, 10, 4062–4071.

[60]

Yang, Y. C.; Zhang, X. X.; Qin, L.; Zeng, Q. B.; Qiu, X. H.; Huang, R. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 2017, 8, 15173.

[61]

Park, J.; Jeon, D.; Kang, Y. B.; Yu, Y. J.; Kim, T. Direct mapping of the gate response of a multilayer WSe2/MoS2 heterostructure with locally different degrees of charge depletion. J. Phys. Chem. Lett. 2019, 10, 4010–4016.

Nano Research
Pages 12809-12816
Cite this article:
Wang J, He D, Bai Z, et al. Enhanced exciton diffusion from interlayer charge-transfer transitions in PtSe2/MoSe2 van der Waals heterojunction. Nano Research, 2023, 16(11): 12809-12816. https://doi.org/10.1007/s12274-023-6195-8
Topics:

656

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 19 July 2023
Revised: 30 August 2023
Accepted: 12 September 2023
Published: 24 October 2023
© Tsinghua University Press 2023
Return