AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Design and construction of size-controlled CoO/CS catalysts for Fischer–Tropsch synthesis

Wei Sun1,§Ting Kuang1,§Guiyou Wei1Yue Li1Yaqin Liu1Shuai Lyu2Yuhua Zhang1Jinlin Li1Li Wang1( )
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China

§ Wei Sun and Ting Kuang contributed equally to this work.

Show Author Information

Graphical Abstract

The influence of face-centered cubic (fcc)-Co particle size has been studied experimentally, revealing that the turnover frequency (TOF) remained unaffected by cobalt particle size larger than 7.7 nm. Significantly, when reducing the size of metallic fcc-Co0 particles from 17.6 to 7.7 nm, the cobalt time yield increased to 6.7 μmolCO·gCo−1·s−1, indicating an enhancement in catalytic activity.

Abstract

The use of supported Co-based catalysts is widespread in various catalytic reactions due to their unique structures. The structural sensitivity of these catalysts is closely linked to their particle size and crystal form. Consequently, comprehending the structure–activity relationship requires the development of well-defined Co-based catalysts. Herein, we employed a colloidal wet chemical process and a heterogeneous nucleation method to prepare well-defined Co-based catalysts supported by inert carbon nanospheres. The nanospheres’ surface possesses abundant functional groups that efficiently capture metal complexes and facilitate the nucleation and growth of CoO nanoparticles. By adjusting the Co source concentration, solvent molar ratio, and nucleation growth kinetics, we successfully prepared CoO/carbon sphere (CS) catalysts with different particle sizes and crystal forms. The influence of metallic face-centered cubic (fcc)-Co0 particle size in the range of 6.6–17.6 nm on the performance of Fischer–Tropsch synthesis (FTS) using well-defined CoO/CS catalysts has been investigated. The result demonstrated that the turnover frequency (TOF) remained constant for CoO/CS catalysts with metallic fcc-Co0 particle size larger than 7.7 nm. However, both the selectivity and the activity changed for CoO/CS catalysts with smaller particles (< 7.7 nm). Significantly, when metallic fcc-Co0 particle size was reduced from 17.6 to 7.7 nm, the cobalt time yield increased to 6.7 μmolCO·gCo−1·s−1, indicating improved catalytic activity. At the same time, the CH4 selectivity decreased to 4.9%, suggesting a higher preference for hydrocarbon production. These findings demonstrate the importance of particle size in Co catalyzed Fischer–Tropsch synthesis. The use of well-defined CoO/CS catalysts offers valuable insights into the structure–activity relationship, leading to a better understanding of Co catalyzed Fischer–Tropsch synthesis.

Electronic Supplementary Material

Download File(s)
12274_2023_6199_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Galvis, H. M. T.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149.

[2]

Han, X. X.; Lv, J.; Huang, S. Y.; Zhao, Q.; Wang, Y.; Li, Z. H.; Ma, X. B. Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer–Trposch synthesis. Nano Res. 2023, 16, 6270–6277.

[3]

Boulamanti, A.; Moya, J. A. Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renew. Sustain. Energy Rev. 2017, 68, 1205–1212.

[4]

Li, J.; He, Y. L.; Tan, L.; Zhang, P. P.; Peng, X. B.; Oruganti, A.; Yang, G. H.; Abe, H.; Wang, Y.; Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018, 1, 787–793.

[5]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[6]

ten Have, I. C.; Weckhuysen, B. M. The active phase in cobalt-based Fischer–Tropsch synthesis. Chem. Catal. 2021, 1, 339–363.

[7]

Zheng, X. S.; Lin, Y.; Pan, H. B.; Wu, L. H.; Zhang, W.; Cao, L. L.; Zhang, J.; Zheng, L. R.; Yao, T. Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Res. 2018, 11, 2357–2365.

[8]

Park, J. C.; Kang, S. W.; Kim, J. C.; Kwon, J. I.; Jang, S.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H. T.; Jung, H. et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res. 2017, 10, 1044–1055.

[9]

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

[10]

Wang, Z. Y.; Yang, C. S.; Li, X. H.; Song, X. W.; Pei, C. L.; Zhao, Z. J.; Gong, J. L. The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts. Nano Res. 2023, 16, 6128–6133.

[11]

Sun, J. Q.; Tao, L.; Ye, C. L.; Wang, Y.; Meng, G.; Lei, H. Y.; Zheng, S. K.; Xing, C.; Tao, X.; Wu, P. F. et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2023, 145, 7113–7122.

[12]

Li, K.; Pei, Y.; Xiao, P.; He, Z. Y.; Carabineiro, S. A. C.; Jiang, H. Y.; Zhu, J. J. Templated synthesis of mesoporous Co3O4 nanostructures for the liquid-phase aerobic oxidation of benzyl alcohol to benzaldehyde. ACS Appl. Nano Mater. 2022, 5, 3722–3732.

[13]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[14]

Chen, W.; Lin, T. J.; Dai, Y. Y.; An, Y. L.; Yu, F.; Zhong, L. S.; Li, S. G.; Sun, Y. H. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catal. Today 2018, 311, 8–22.

[15]

Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2022, 15, 1753–1778.

[16]

Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.

[17]

Prieto, G.; Martínez, A.; Concepción, P.; Moreno-Tost, R. Cobalt particle size effects in Fischer–Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J. Catal. 2009, 266, 129–144.

[18]

Lyu, S.; Wang, L.; Zhang, J. H.; Liu, C.; Sun, J. M.; Peng, B.; Wang, Y.; Rappé, K. G.; Zhang, Y. H.; Li, J. L. et al. Role of active phase in Fischer–Tropsch synthesis: Experimental evidence of CO activation over single-phase cobalt catalysts. ACS Catal. 2018, 8, 7787–7798.

[19]

Liu, S. X.; Sun, B. L.; Zhang, Y. H.; Li, J. L.; Resasco, D. E.; Nie, L.; Wang, L. The role of intermediate Co x Mn1− x O ( x = 0.6–0.85) nanocrystals in the formation of active species for the direct production of lower olefins from syngas. Chem. Commun. 2019, 55, 6595–6598.

[20]

Nie, L.; Li, Z.; Kuang, T.; Lyu, S.; Liu, S. X.; Zhang, Y. H.; Peng, B.; Li, J. L.; Wang, L. Role of well-defined cobalt crystal facets in Fischer–Tropsch synthesis: A combination of experimental and theoretical studies. Chem. Commun. 2019, 55, 10559–10562.

[21]

Khodakov, A. Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692–1744.

[22]

Munnik, P.; de Jongh, P. E.; de Jong, K. P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 2014, 136, 7333–7340.

[23]

Eggenhuisen, T. M.; den Breejen, J. P.; Verdoes, D.; de Jongh, P. E.; de Jong, K. P. Fundamentals of melt infiltration for the preparation of supported metal catalysts. The case of Co/SiO2 for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2010, 132, 18318–18325.

[24]

Martínez, A.; Prieto, G.; Rollán, J. Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J. Catal. 2009, 263, 292–305.

[25]

den Breejen, J. P.; Sietsma, J. R. A.; Friedrich, H.; Bitter, J. H.; de Jong, K. P. Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis. J. Catal. 2010, 270, 146–152.

[26]

Sun, X. H.; Suarez, A. I. O.; Meijerink, M.; van Deelen, T.; Ould-Chikh, S.; Zečević, J.; de Jong, K. P.; Kapteijn, F.; Gascon, J. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.

[27]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[28]

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

[29]

de Mello Donega, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546.

[30]

Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

[31]

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

[32]

van Deelen, T. W.; Nijhuis, J. J.; Krans, N. A.; Zečević, J.; de Jong, K. P. Preparation of cobalt nanocrystals supported on metal oxides to study particle growth in Fischer–Tropsch catalysts. ACS Catal. 2018, 8, 10581–10589.

[33]

Gross, A. F.; Diehl, M. R.; Beverly, K. C.; Richman, E. K.; Tolbert, S. H. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 2003, 107, 5475–5482.

[34]

Hondow, N.; Fuller, R. O. The use of preformed nanoparticles in the production of heterogeneous catalysts. J. Colloid Interface Sci. 2014, 417, 396–401.

[35]

van Deelen, T. W.; Su, H.; Sommerdijk, N. A. J. M.; de Jong, K. P. Assembly and activation of supported cobalt nanocrystal catalysts for the Fischer–Tropsch synthesis. Chem. Commun. 2018, 54, 2530–2533.

[36]

Kuang, T.; Lyu, S.; Liu, S. X.; Zhang, Y. H.; Li, J. L.; Wang, G. H.; Wang, L. Controlled synthesis of cobalt nanocrystals on the carbon spheres for enhancing Fischer–Tropsch synthesis performance. J. Energy Chem. 2019, 33, 67–73.

[37]

Liu, Y. D.; Goebl, J.; Yin, Y. D. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653.

[38]

Seo, W. S.; Shim, J. H.; Oh, S. J.; Lee, E. K.; Hur, N. H.; Park, J. T. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J. Am. Chem. Soc. 2005, 127, 6188–6189.

[39]

Meng, G.; Sun, J. Q.; Tao, L.; Ji, K. Y.; Wang, P. F.; Wang, Y.; Sun, X. H.; Cui, T. T.; Du, S. X.; Chen, J. G. et al. Ru1Co n single-atom alloy for enhancing Fischer–Tropsch synthesis. ACS Catal. 2021, 11, 1886–1896.

[40]

Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.; Xu, X. D.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P. Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964.

[41]

den Breejen, J. P.; Radstake, P. B.; Bezemer, G. L.; Bitter, J. H.; Frøseth, V.; Holmen, A.; de Jong, K. P. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 2009, 131, 7197–7203.

[42]

van Helden, P.; Ciobîcă, I. M.; Coetzer, R. L. J. The size-dependent site composition of fcc cobalt nanocrystals. Catal. Today 2016, 261, 48–59.

Nano Research
Pages 2520-2527
Cite this article:
Sun W, Kuang T, Wei G, et al. Design and construction of size-controlled CoO/CS catalysts for Fischer–Tropsch synthesis. Nano Research, 2024, 17(4): 2520-2527. https://doi.org/10.1007/s12274-023-6199-4
Topics:

802

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 29 August 2023
Revised: 12 September 2023
Accepted: 12 September 2023
Published: 17 November 2023
© Tsinghua University Press 2023
Return