AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Insights into the kinetics–morphology relationship of 1-, 2-, and 3D TiNb2O7 anodes for Li-ion storage

Wenlei Xu1Yaolin Xu2( )Veronika Grzimek2Andrea Martin1Thorsten Schultz3,4Patrícia A. Russo1Yan Lu2Norbert Koch3,4Nicola Pinna1( )
Department of Chemistry, IRIS Adlershof and the Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
Joint Research Group of Molecular Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
Show Author Information

Graphical Abstract

This work synthesized one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) nanostructured TiNb2O7 as electrode materials for Li-ion batteries. Among them, the 2D electrode exhibits the fastest kinetics for charge transfer and Li-ion diffusion and hence shows the highest rate capability.

Abstract

Understanding the influence of electrode material’s morphology on electrochemical behavior is of great significance for the development of rechargeable batteries, however, such studies are often limited by the inability to precisely control the morphology of electrode materials. Herein, nanostructured titanium niobium oxides (TiNb2O7) with three different morphologies (one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D)) were synthesized via a facile microwave-assisted solvothermal method. The influence of the morphological dimension of TiNb2O7 as electrode material on the electrochemical performance in Li-ion batteries (LIBs) and the underlying correlation with the electrochemical kinetics were studied in detail. 2D TiNb2O7 (TNO-2D) shows a superior rate capability and cycling stability, associated with improved kinetics for charge transfer and Li-ion diffusion, compared to the 1D and 3D materials. Operando X-ray diffraction measurements reveal the structural stability and crystallographic evolution of TNO-2D upon lithiation and delithiation and correlate the Li-ion diffusion kinetics with the lattice evolution during battery charge and discharge. Moreover, carbon-coated TNO-2D achieves enhanced rate capability (205 mAh·g−1 at 50 C) and long-term cycling stability (87% after 1000 cycles at 5 C). This work provides insights into the rational morphology design of electrode materials for accelerated charge transfer and enhanced fast-charging capability, pushing forward the development of electrode materials for high-power rechargeable batteries in future energy storage.

Electronic Supplementary Material

Download File(s)
12274_2023_6201_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561

[2]

Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

[3]

Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341.

[4]

Downie, L. E.; Krause, L. J.; Burns, J. C.; Jensen, L. D.; Chevrier, V. L.; Dahn, J. R. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry. J. Electrochem. Soc. 2013, 160, A588–A594.

[5]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[6]

von Sacken, U.; Nodwell, E.; Sundher, A.; Dahn, J. R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 1995, 54, 240–245.

[7]

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 2014, 9, 618–623.

[8]

Zhao, B. T.; Ran, R.; Liu, M. L.; Shao, Z. P. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. R: Rep. 2015, 98, 1–71.

[9]

Yuan, T.; Tan, Z. P.; Ma, C. R.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 2017, 7, 1601625.

[10]

Yi, T. F.; Xie, Y.; Zhu, Y. R.; Zhu, R. S.; Shen, H. Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. J. Power Sources 2013, 222, 448–454.

[11]

Wei, T. T.; Peng, P. P.; Ji, Y. R.; Zhu, Y. R.; Yi, T. F.; Xie, Y. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 2022, 71, 400–410.

[12]

Yi, T. F.; Mei, J.; Peng, P. P.; Luo, S. H. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos. Part B: Eng. 2019, 167, 566–572.

[13]

Hu, L.; Luo, L. J.; Tang, L. F.; Lin, C. F.; Li, R. J.; Chen, Y. J. Ti2Nb2 x O4+5 x anode materials for lithium-ion batteries: A comprehensive review. J. Mater. Chem. A 2018, 6, 9799–9815.

[14]

Deng, Q. L.; Fu, Y. P.; Zhu, C. B.; Yu, Y. Niobium-based oxides toward advanced electrochemical energy storage: Recent advances and challenges. Small 2019, 15, 1804884.

[15]

Han, J. T.; Huang, Y. H.; Goodenough, J. B. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011, 23, 2027–2029.

[16]

Han, J. T.; Goodenough, J. B. 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. Chem. Mater. 2011, 23, 3404–3407

[17]

Lu, X.; Jian, Z. L.; Fang, Z.; Gu, L.; Hu, Y. S.; Chen, W.; Wang, Z. X.; Chen, L. Q. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ. Sci. 2011, 4, 2638–2644.

[18]

Tang, K.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. “Nano-Pearl-String” TiNb2O7 as anodes for rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 49–53

[19]

Park, H.; Wu, H. B.; Song, T.; Lou, X. W.; Paik, U. Porosity-controlled TiNb2O7 microspheres with partial nitridation as a practical negative electrode for high-power lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1401945.

[20]

Griffith, K. J.; Seymour, I. D.; Hope, M. A.; Butala, M. M.; Lamontagne, L. K.; Preefer, M. B.; Koçer, C. P.; Henkelman, G.; Morris, A. J.; Cliffe, M. J. et al. Ionic and electronic conduction in TiNb2O7. J. Am. Chem. Soc. 2019, 141, 16706–16725.

[21]

Lyu, H.; Li, J. L.; Wang, T.; Thapaliya, B. P.; Men, S.; Jafta, C. J.; Tao, R. M.; Sun, X. G.; Dai, S. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications. ACS Appl. Energy Mater. 2020, 3, 5657–5665.

[22]

Lin, C. F.; Wang, G. Z.; Lin, S. W.; Li, J. B.; Lu, L. TiNb6O17: A new electrode material for lithium-ion batteries. Chem. Commun. 2015, 51, 8970–8973.

[23]

Li, S. H.; Chen, J. W.; Gong, X. F.; Wang, J. X.; Lee, P. S. Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 2018, 10, 406–416.

[24]

Takami, N.; Ise, K.; Harada, Y.; Iwasaki, T.; Kishi, T.; Hoshina, K. High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications. J. Power Sources 2018, 396, 429–436.

[25]

Wang, H. K.; Qian, R. F.; Cheng, Y. H.; Wu, H. H.; Wu, X. W.; Pan, K. M.; Zhang, Q. B. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 18425–18463.

[26]

Yuan, T.; Luo, S. N.; Soule, L.; Wang, J. H.; Wang, Y. C.; Sun, D. W.; Zhao, B. T.; Li, W. W.; Yang, J. H.; Zheng, S. Y. et al. A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Mater. Today 2021, 45, 8–19.

[27]

Deng, S. J.; Zhu, H.; Wang, G. Z.; Luo, M.; Shen, S. H.; Ai, C. Z.; Yang, L.; Lin, S. W.; Zhang, Q. H.; Gu, L. et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nat. Commun. 2020, 11, 132.

[28]

Zhao, L. J.; Wang, S. T.; Dong, Y. H.; Quan, W.; Han, F.; Huang, Y. M.; Li, Y. T.; Liu, X. H.; Li, M. D.; Zhang, Z. T. et al. Coarse-grained reduced Mo x Ti1− x Nb2O7+ y anodes for high-rate lithium-ion batteries. Energy Stor. Mater. 2021, 34, 574–581.

[29]

He, Y. H.; Matthews, B.; Wang, J. Y.; Song, L.; Wang, X. X.; Wu, G. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D. J. Mater. Chem. A 2018, 6, 735–753.

[30]

An, Y. L.; Tian, Y.; Wei, C. L.; Tao, Y.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today 2021, 37, 101094.

[31]

Yang, C.; Yu, S.; Lin, C. F.; Lv, F.; Wu, S. Q.; Yang, Y.; Wang, W.; Zhu, Z. Z.; Li, J. B.; Wang, N. et al. Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano 2017, 11, 4217–4224.

[32]

Park, H.; Song, T.; Paik, U. Porous TiNb2O7 nanofibers decorated with conductive Ti1− x Nb x N bumps as a high power anode material for Li-ion batteries. J. Mater. Chem. A 2015, 3, 8590–8596.

[33]

Cheng, X. L.; Sun, Y. J.; Li, D. J.; Yang, H.; Chen, F.; Huang, F. Y.; Jiang, Y.; Wu, Y.; An, X. T.; Yu, Y. From 0D to 3D: Dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv. Energy Mater. 2021, 11, 2102263.

[34]

Guo, B. K.; Yu, X. Q.; Sun, X. G.; Chi, M. F.; Qiao, Z. A.; Liu, J.; Hu, Y. S.; Yang, X. Q.; Goodenough, J. B.; Dai, S. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 2014, 7, 2220–2226.

[35]

Zhu, R. M.; Duan, H. Y.; Zhao, Z. M.; Pang, H. Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. J. Mater. Chem. A 2021, 9, 9535–9572.

[36]

Cheng, Q. S.; Liang, J. W.; Lin, N.; Guo, C.; Zhu, Y. C.; Qian, Y. T. Porous TiNb2O7 nanospheres as Ultra long-life and high-power anodes for lithium-ion batteries. Electrochim. Acta 2015, 176, 456–462.

[37]
Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application. Springer Science & Business Media: London, 2009.
[38]

Pinna, N.; Niederberger, M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292–5304.

[39]

Skrodczky, K.; Antunes, M. M.; Han, X. Y.; Santangelo, S.; Scholz, G.; Valente, A. A.; Pinna, N.; Russo, P. A. Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Commun. Chem. 2019, 2, 129.

[40]

Deshmukh, R.; Niederberger, M. Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chem. Eur. J 2017, 23, 8542–8570.

[41]

Niederberger, M.; Garnweitner, G. Nonaqueous synthesis of barium titanate nanocrystals in acetophenone as oxygen supplying agent. MRS Online Proc. Library 2005, 879, 98.

[42]

Han, X. Y.; Wahl, S.; Russo, P. A.; Pinna, N. Cobalt-assisted morphology and assembly control of Co-doped ZnO nanoparticles. Nanomaterials 2018, 8, 249.

[43]

Li, W. H.; Zamani, R.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Morante, J. R.; Arbiol, J.; Cabot, A. Metal ions to control the morphology of semiconductor nanoparticles: Copper selenide nanocubes. J. Am. Chem. Soc. 2013, 135, 4664–4667.

[44]

Selishcheva, E.; Parisi, J.; Kolny-Olesiak, J. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles. J. Nanopart. Res. 2012, 14, 711.

[45]

Zhu, X. Z.; Fu, Q. F.; Tang, L. F.; Lin, C. F.; Xu, J.; Liang, G. S.; Li, R. J.; Luo, L. J.; Chen, Y. J. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 23711–23720.

[46]

Shen, S. H.; Zhang, S. Z.; Deng, S. J.; Pan, G. X.; Wang, Y. D.; Liu, Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Bioinspired large-scale production of multidimensional high-rate anodes for both liquid & solid-state lithium ion batteries. J. Mater. Chem. A 2019, 7, 22958–22966.

[47]

Wadsley, A. D. Mixed oxides of titanium and niobium. I. Acta Crystallogr. 1961, 14, 660–664.

[48]

Liu, A.; Zhang, H. T.; Xing, C. X.; Wang, Y. L.; Zhang, J. W.; Zhang, X. X.; Zhang, S. J. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and ionic liquid-based electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 21349–21361.

[49]

Meng, J. S.; He, Q.; Xu, L. H.; Zhang, X. C.; Liu, F.; Wang, X. P.; Li, Q.; Xu, X. M.; Zhang, G. B.; Niu, C. J. et al. Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage. Adv. Energy Mater. 2019, 9, 1802695.

[50]

Baek, S. W.; Wyckoff, K. E.; Butts, D. M.; Bienz, J.; Likitchatchawankun, A.; Preefer, M. B.; Frajnkovič, M.; Dunn, B. S.; Seshadri, R.; Pilon, L. Operando calorimetry informs the origin of rapid rate performance in microwave-prepared TiNb2O7 electrodes. J. Power Sources 2021, 490, 229537

[51]

Liu, M. N.; Yan, C.; Zhang, Y. G. Fabrication of Nb2O5 nanosheets for high-rate lithium ion storage applications. Sci. Rep. 2015, 5, 8326.

[52]

Uceda, M.; Chiu, H. C.; Zhou, J. G.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Nanoscale assembling of graphene oxide with electrophoretic deposition leads to superior percolation network in Li-ion electrodes: TiNb2O7/rGO composite anodes. Nanoscale 2020, 12, 23092–23104.

[53]

Lin, C. F.; Deng, S. J.; Kautz, D. J.; Xu, Z. H.; Liu, T.; Li, J. B.; Wang, N.; Lin, F. Intercalating Ti2Nb14O39 anode materials for fast-charging, high-capacity and safe lithium-ion batteries. Small 2017, 13, 1702903.

[54]

Feng, T. Y.; Xu, Y. L.; Zhang, Z. W.; Du, X. F.; Sun, X. F.; Xiong, L. L.; Rodriguez, R.; Holze, R. Low-cost Al2O3 coating layer as a preformed SEI on natural graphite powder to improve coulombic efficiency and high-rate cycling stability of lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6512–6519.

[55]

Ren, J. G.; Wu, Q. H.; Hong, G.; Zhang, W. J.; Wu, H. M.; Amine, K.; Yang, J. B.; Lee, S. T. Silicon-graphene composite anodes for high-energy lithium batteries. Energy Technol. 2013, 1, 77–84.

[56]

Huang, S. Z.; Zhang, L.; Liu, L. F.; Liu, L. X.; Li, J. J.; Hu, H.; Wang, J. W.; Ding, F.; Schmidt, O. G. Rationally engineered amorphous TiO x /Si/TiO x nanomembrane as an anode material for high energy lithium ion battery. Energy Stor. Mater. 2018, 12, 23–29.

[57]

Domi, Y.; Usui, H.; Iwanari, D.; Sakaguchi, H. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A1651–A1654.

[58]

Xu, H.; Li, S.; Zhang, C.; Chen, X. L.; Liu, W. J.; Zheng, Y. H.; Xie, Y.; Huang, Y. H.; Li, J. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 2019, 12, 2991–3000.

[59]

Yang, L. T.; Zhu, X. Z.; Li, X. H.; Zhao, X. B.; Pei, K.; You, W. B.; Li, X.; Chen, Y. J.; Lin, C. F.; Che, R. C. Conductive copper niobate: Superior Li+-storage capability and novel Li+-transport mechanism. Adv. Energy Mater. 2019, 9, 1902174.

[60]

Hong, Z. S.; Zhen, Y. C.; Ruan, Y. R.; Kang, M. L.; Zhou, K. Q.; Zhang, J. M.; Huang, Z. G.; Wei, M. D. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 2018, 30, 1802035.

[61]

Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018, 559, 556–563.

[62]

Griffith, K. J.; Senyshyn, A.; Grey, C. P. Structural stability from crystallographic shear in TiO2-Nb2O5 Phases: Cation ordering and lithiation behavior of TiNb24O62. Inorg. Chem. 2017, 56, 4002–4010.

[63]

Ise, K.; Morimoto, S.; Harada, Y.; Takami, N. Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries. Solid State Ion. 2018, 320, 7–15.

[64]

Yan, L.; Shu, J.; Li, C. X.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Zhang, C. F.; Zheng, Y.; Xie, Y.; Guo, Z. P. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Stor. Mater. 2019, 16, 535–544

[65]

Xu, W. L.; Russo, P. A.; Schultz, T.; Koch, N.; Pinna, N. Niobium-doped titanium dioxide with high dopant contents for enhanced lithium-ion storage. ChemElectroChem 2020, 7, 4016–4023.

[66]

Wang, D. L.; Yu, Y. C.; He, H.; Wang, J.; Zhou, W. D.; Abruña, H. D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 2015, 9, 1775–1781.

[67]

Wang, J. C.; Gao, G. H.; Zhou, X. W.; Wu, J. D.; Yang, H. Y.; Li, Q.; Wu, G. M. A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J. Solid State Electrochem. 2014, 18, 2459–2467.

[68]

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

[69]

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin. Science 2014, 343, 1210–1211.

[70]

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

[71]

Singh, M.; Kaiser, J.; Hahn, H. Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 2015, 162, A1196–A1201.

[72]

Catti, M.; Pinus, I.; Knight, K. Lithium insertion properties of Li x TiNb2O7 investigated by neutron diffraction and first-principles modelling. J. Solid State Chem. 2015, 229, 19–25.

[73]

AbdelHamid, A. A.; Mendoza-Garcia, A.; Ying, J. Y. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 2022, 93, 106860.

[74]

Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

[75]

Jumas, J. C.; Sougrati, M. T.; Perea, A.; Aldon, L.; Olivier-Fourcade, J. Combined operando studies of new electrode materials for Li-ion batteries. Hyperfine Interact. 2013, 217, 107–115.

[76]

Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Kristallogr. Cryst. Mater. 2014, 229, 345–352.

Nano Research
Pages 2770-2780
Cite this article:
Xu W, Xu Y, Grzimek V, et al. Insights into the kinetics–morphology relationship of 1-, 2-, and 3D TiNb2O7 anodes for Li-ion storage. Nano Research, 2024, 17(4): 2770-2780. https://doi.org/10.1007/s12274-023-6201-1
Topics:

1063

Views

70

Downloads

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 13 July 2023
Revised: 12 September 2023
Accepted: 14 September 2023
Published: 03 November 2023
© The Author(s) 2023

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return