AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction

Xuwei Liu1Chaozhen Liu2Xun He1Zhengwei Cai3Kai Dong3Jun Li1Xiaoya Fan1Ting Xie1Xiya Yang1Yonglan Luo1Dongdong Zheng3Shengjun Sun3Sulaiman Alfaifi4Feng Gong2( )Xuping Sun1,3 ( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Chemistry Department, Frontier of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Show Author Information

Graphical Abstract

Fe-doped Co3O4 nanowire strutted three-dimensional (3D) pinewood-derived carbon (PC) (Fe-Co3O4/PC) facilitates the ambient electrosynthesis of NH3 via NO3 reduction, achieving a high Faradic efficiency of 96.5% at −0.5 V and a large NH3 yield of 1.2 mmol·h–1·cm–2 at −0.9 V in 0.1 M NaOH with 0.1 M NO3.

Abstract

Nitrate (NO3), a nitrogen-containing pollutant, is prevalent in aqueous solutions, contributing to a range of environmental and health-related issues. The electrocatalytic reduction of NO3 holds promise as a sustainable approach to both eliminating NO3 and generating valuable ammonia (NH3). Nevertheless, the reduction reaction of NO3 (NO3RR), involving 8-electron transfer process, is intricate, necessitating highly efficient electrocatalysts to facilitate the conversion of NO3 to NH3. In this study, Fe-doped Co3O4 nanowire strutted three-dimensional (3D) pinewood-derived carbon (Fe-Co3O4/PC) is proposed as a high-efficiency NO3RR electrocatalyst for NH3 production. Operating within 0.1 M NaOH containing NO3, Fe-Co3O4/PC demonstrates exceptional performance, obtain an impressively large NH3 yield of 0.55 mmol·h−1·cm−2 and an exceptionally high Faradaic efficiency of 96.5% at −0.5 V, superior to its Co3O4/PC counterpart (0.2 mmol·h−1·cm−2, 73.3%). Furthermore, the study delves into the reaction mechanism of Fe-Co3O4 for NO3RR through theoretical calculations.

Electronic Supplementary Material

Download File(s)
12274_2023_6204_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

[2]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[3]
Yue, L. C.; Song, W.; Zhang, L. X.; Luo, Y. L.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q. et al. Recent Advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Struct., in press, DOI: 10.1002/sstr.202300168.
[4]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[5]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges, and perspectives. Nano Res. 2019, 12, 1229–1249.

[6]

Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.

[7]

Wu, Q. L.; Sun, Y.; Zhao, Q.; Li, H.; Ju, Z. N.; Wang, Y.; Sun, X. D.; Jia, B. H.; Qiu, J. S.; Ma, T. Y. Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants. Nano Res. 2023, 16, 4574–4581.

[8]

Wang, J.; Nan, H. F.; Tian, Y.; Chu, K. FeMo3S4 for efficient nitrogen reduction reaction. ACS Sustainable Chem. Eng. 2020, 8, 12733–12740.

[9]

Ouyang, L.; Liang, J.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Liu, Q.; Hamdy, M. S.; Sun, X. P.; Ying, B. W. Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 2023, 50, 6–44.

[10]

Guo, Y.; Gu, J. X.; Zhang, R.; Zhang, S. C.; Li, Z.; Zhao, Y. W.; Huang, Z. D.; Fan, J.; Chen, Z. F.; Zhi, C. Y. Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 2021, 11, 2101699.

[11]

Sun, H.; Yin, H. Q.; Shi, W. X.; Yang, L. L.; Guo, X. W.; Lin, H.; Zhang, J. W.; Lu, T. B.; Zhang, Z. M. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 2022, 15, 3026–3033.

[12]

Liu, G. H.; Niu, L. J.; Ma, Z. X.; An, L.; Qu, D.; Wang, D. D.; Wang, X. Y.; Sun, Z. C. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 2022, 15, 5940–5945.

[13]

Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

[14]

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

[15]

Yin, H. Q.; Yang, L. L.; Sun, H.; Wang, H.; Wang, Y. J.; Zhang, M.; Lu, T. B.; Zhang, Z. M. W/Mo-polyoxometalate-derived electrocatalyst for high-efficiency nitrogen fixation. Chin. Chem. Lett. 2023, 34, 107337.

[16]

Zhang, W.; Li, W. T.; Wu, Q. L.; Zhao, Q.; He, X. J.; Liu, D. L.; Jia, B. H.; Qiu, J. S.; Ma, T. Y.; Sun, Y. Architecting bismuth molybdate nanoparticles with abundant oxygen vacancies and high bismuth concentration for efficient N2 electroreduction to NH3. Adv. Mater. Interfaces 2023, 10, 2202019.

[17]

Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289

[18]

Du, K.; Lang, X. Y.; Yang, Y. Y.; Cheng, C. Q.; Lan, N.; Qiu, K. W.; Mao, J.; Wang, W. C.; Ling, T. Hydrogen-assisted activation of N2 molecules on atomic steps of ZnSe nanorods. Nano Res. 2023, 16, 6721–6727.

[19]

Li, L. Q.; Tang, C.; Jin, H. Y.; Davey, K.; Qiao, S. Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255.

[20]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3− x synergistically coupling Ti3C2T x -MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[21]

Chen, J.; He, X.; Zhao, D. L.; Li, J.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Liu, Q.; Xie, L. S. et al. Greatly enhanced electrochemical nitrate-to-ammonia conversion over an Fe-doped TiO2 nanoribbon array. Green Chem. 2022, 24, 7913–7917.

[22]

Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

[23]

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

[24]

Zhao, Z. W.; Chen, Y.; Liu, Y.; Zhao, Y. L.; Zhang, Z. J.; Zhang, K.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Atomic catalyst supported on oxygen defective mxenes for synergetic electrocatalytic nitrate reduction to ammonia: A first principles study. Appl. Surf. Sci. 2023, 614, 156077.

[25]

Luo, Y. J.; Chen, K.; Wang, G. H.; Zhang, G. K.; Zhang, N. N.; Chu, K. Ce-doped MoS2− x nanoflower arrays for electrocatalytic nitrate reduction to ammonia. Inorg. Chem. Front. 2023, 10, 1543–1551.

[26]

Zhang, Z. J.; Liu, Y.; Su, X. Z.; Zhao, Z. W.; Mo, Z. K.; Wang, C. Y.; Zhao, Y. L.; Chen, Y.; Gao, S. Y. Electro-triggered joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res. 2023, 16, 6632–6641.

[27]

Wang, S. T.; Liu, Y.; Zhang, K.; Gao, S. Y. Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting. Nano Energy 2023, 112, 108434.

[28]

Song, W.; Yue, L. C.; Fan, X. Y.; Luo, Y. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q.; Hamdy, M. S.; Sun, X. P. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 2023, 10, 3489–3514.

[29]

Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe-V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537.

[30]
Yang, M. S.; Wei, T. R.; He, J.; Liu, Q.; Feng, L. G.; Li, H. Y.; Luo, J.; Liu, X. J. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res., in press, DOI: 10.1007/s12274-023-5997-z.
[31]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[32]

Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

[33]

Kanter, D. R.; Chodos, O.; Nordland, O.; Rutigliano, M.; Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 2020, 3, 956–963.

[34]

Liu, J. X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052–7064.

[35]

Carvalho, O. Q.; Marks, R.; Nguyen, H. K. K.; Vitale-Sullivan, M. E.; Martinez, S. C.; Árnadóttir, L.; Stoerzinger, K. A. Role of electronic structure on nitrate reduction to ammonium: A periodic journey. J. Am. Chem. Soc. 2022, 144, 14809–14818.

[36]

Fan, X. Y.; Ma, C. Q.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Wang, Y.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Zhang, J. et al. Unveiling selective nitrate reduction to ammonia with Co3O4 nanosheets/TiO2 nanobelt heterostructure catalyst. J. Colloid Interface Sci. 2023, 630, 714–720.

[37]

Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets. ACS Catal. 2021, 11, 15135–15140.

[38]

Fu, W. Y.; Du, X. D.; Su, P.; Zhang, Q. Z.; Zhou, M. H. Synergistic effect of Co(III) and Co(II) in a 3D structured Co3O4/carbon felt electrode for enhanced electrochemical nitrate reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 28348–28358.

[39]

Zhang, M. L.; Song, K. P.; Liu, C.; Zhang, Z. D.; He, W. Q.; Huang, H.; Liu, J. L. Electron-rich Au nanocrystals/Co3O4 interface for enhanced electrochemical nitrate reduction into ammonia. J. Colloid Interface Sci. 2023, 650, 193–202.

[40]

Li, K.; Chen, C.; Bian, X. C.; Sun, T. H.; Jia, J. P. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 2020, 362, 137121.

[41]

Deng, Z. Q.; Ma, C. Q.; Li, Z. R.; Luo, Y. S.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Du, J.; Lu, Q. P.; Zheng, B. Z. et al. High-efficiency electrochemical nitrate reduction to ammonia on a Co3O4 nanoarray catalyst with cobalt vacancies. ACS Appl. Mater. Interfaces 2022, 14, 46595–46602.

[42]

Li, B.; Xue, P. F.; Bai, Y.; Tang, Q.; Qiao, M.; Zhu, D. D. Coupling Cu doping and oxygen vacancies in Co3O4 for efficient electrochemical nitrate conversion to ammonia. Chem. Commun. 2023, 59, 5086–5089.

[43]
Fan, X. Y.; Liu, C. Z.; Li, Z. X.; Cai, Z. W.; Ouyang, L.; Li, Z. R.; He, X.; Luo, Y. S.; Zheng, D. D.; Sun, S. J. et al. Pd-doped Co3O4 nanoarray for efficient eight-electron nitrate electrocatalytic reduction to ammonia synthesis. Small, in press, DOI: 10.1002/smll.202303424.
[44]

Kim, K.; Zagalskaya, A.; Ng, J. L.; Hong, J.; Alexandrov, V.; Pham, T. A.; Su, X. Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat. Commun. 2023, 14, 823.

[45]

Rao, Y.; Chen, S.; Yue, Q.; Kang, Y. J. Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for long-lasting and flexible rechargeable Zn-Air batteries. ACS Catal. 2021, 11, 8097–8103.

[46]

Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

[47]

Peng, X. W.; Zhang, L.; Chen, Z. X.; Zhong, L. X.; Zhao, D. K.; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

[48]
Li, D.; Cheng, H.; Hao, X. X.; Yu, G. P.; Qiu, C. T.; Xiao, Y. J.; Huang, H. B.; Lu, Y. Y.; Zhang, B. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater., in press, DOI: 10.1002/adma.202304917.
[49]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[50]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[51]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[52]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[53]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[54]

Li, Y. E.; Zhu, W. X.; Fu, X.; Zhang, Y.; Wei, Z. Y.; Ma, Y. Y.; Yue, T. L.; Sun, J.; Wang, J. L. Two-dimensional zeolitic imidazolate framework-l-derived iron-cobalt oxide nanoparticle-composed nanosheet array for water oxidation. Inorg. Chem. 2019, 58, 6231–6237.

[55]

He, X.; Li, Z. X.; Yao, J.; Dong, K.; Li, X. H.; Hu, L.; Sun, S. J.; Cai, Z. W.; Zheng, D. D.; Luo, Y. S. et al. High-efficiency electrocatalytic nitrite reduction toward ammonia synthesis on CoP@TiO2 nanoribbon array. iScience 2023, 26, 107100.

[56]

Cong, L. D.; Zhang, S. C.; Zhu, H. Y.; Chen, W. X.; Huang, X. Y.; Xing, Y. L.; Xia, J.; Yang, P. H.; Lu, X. Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Res. 2022, 15, 2104–2111.

[57]

He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.

[58]
Ao, K. L.; Zhang, X. Y.; Nazmutdinov, R. R.; Wang, D.; Shi, J. H.; Yue, X.; Sun, J. G.; Schmickler, W.; Daoud, W. A. Hierarchical CoFe@N-doped carbon decorated wood carbon as bifunctional cathode in wearable Zn-Air battery. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12499.
Nano Research
Pages 2276-2282
Cite this article:
Liu X, Liu C, He X, et al. Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction. Nano Research, 2024, 17(4): 2276-2282. https://doi.org/10.1007/s12274-023-6204-y
Topics:

659

Views

28

Crossref

28

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 25 August 2023
Revised: 14 September 2023
Accepted: 14 September 2023
Published: 23 October 2023
© Tsinghua University Press 2023
Return