AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MOF-derived Se doped MnS/Ti3C2Tx as cathode and Zn-Ti3C2Tx membrane as anode for rocking-chair zinc-ion battery

Kaisheng Sun1Zemao Xiao1Yunfei Shen1Heng Lv1Jianpeng Zhu1Jianxiang Pang1Yang Zheng1Wenwen Kong2Long Chen1( )
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Center of Materials Science and Optoelectronics Engineering, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
Show Author Information

Graphical Abstract

Mn based metal-organic framework derived Se-MnS/Ti3C2Tx is designed, and it is found that the synergistic effect of Se doped and Ti3C2Tx composition is helpful to improve the energy storage properties of MnS. In addition, the Ti3C2Tx film with Zn2+ is used as the negative electrode to assemble the rocking chair battery, which further expands the practical application.

Abstract

Mn-based zinc ion battery has the advantages of low cost and high performance, which makes it the promising energy storage system. However, the poor conductivity and the agglomeration in the synthesis process of manganese-based materials restrict the performance of batteries. Herein, the Se-doped MnS/Ti3C2Tx (Se-MnS/Ti3C2Tx) composite material derived from Mn-based metal-organic framework is reported. Electrochemical tests show that Se-doped could generate S defects and enhance the electrochemical activity of MnS. At the same time, the introduction of Ti3C2Tx substrate is conducive to exposing more sulfur defects and improving the utilization rate of defects. In the mechanism study, it is found that Se-MnS/Ti3C2Tx is transformed into S/Se co-doped Mn3O4 at the first charge, which innovatively elucidated the behavior of S/Se during activation. In the electrochemical performance test, the specific capacity can reach 74.7 mAh·g−1 at 5.0 A·g−1. In addition, the Zn-Ti3C2Tx membrane electrode is prepared by vacuum filtration as the zinc-poor anode, which is assembled into the rocking chair full battery to avoid dendrite growth and exhibit excellent rate performance. The addition of Zn2+ weakens the electrostatic repulsion between the interlayers of MXene, and the formation of the folded morphology aids the penetration of the electrolyte. At 1.0 A·g−1, the capacity can reach 50.6 mAh·g−1. This work is helpful to promote the research and development of the reaction mechanism of manganese based rocking chair batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_6207_MOESM1_ESM.pdf (4.7 MB)

References

[1]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. F.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[2]

Wang, C. Z.; Yang, H.; Wang, B.; Ding, P. B.; Wan, Y.; Bao, W. J.; Li, Y. N.; Ma, S. Y.; Liu, Y.; Lu, Y. K. et al. Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries. Nano Res. 2023, 16, 9488–9495.

[3]

Yuan, N.; Deng, Y.-R.; Wang, S.-H.; Gao, L.; Yang, J.-L.; Zou, N.-C.; Liu, B.-X.; Zhang, J.-Q.; Liu, R.-P.; Zhang, L. Towards superior lithium-sulfur batteries with metal-organic frameworks and their derivatives. Tungsten 2022, 4, 269–283

[4]

Lv, W.; Meng, J. W.; Li, X. D.; Xu, C.; Yang, W. J.; Duan, S. Z.; Li, Y. M.; Ju, X.; Yuan, R. S.; Tian, Y. L. et al. Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive. Energy Storage Mater. 2023, 54, 784–793.

[5]

Geng, K.-Q.; Yang, M.-Q.; Meng, J.-X.; Zhou, L.-F.; Wang, Y.-Q.; Dmytro, S.; Zhang, Q.; Zhong, S.-W.; Ma, Q.-X. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten 2022, 4, 323–335

[6]

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and Free-standing Ti3C2T x MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

[7]

Lv, W.; Meng, J. W.; Li, Y. M.; Yang, W. J.; Tian, Y. L.; Lyu, X.; Duan, C. W.; Ma, X. L.; Wu, Y. Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation. Nano Energy 2022, 98, 107274.

[8]

Zhao, X. Y.; Liang, X. Q.; Li, Y.; Chen, Q. G.; Chen, M. H. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021, 42, 533–569.

[9]

Yong, B.; Ma, D. T.; Wang, Y. Y.; Mi, H. W.; He, C. X.; Zhang, P. X. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 2020, 10, 2002354.

[10]

Sun, K. S.; Pang, J. X.; Zheng, Y.; Xing, F. Y.; Jiang, R.; Min, J.; Ye, J. H.; Wang, L. P.; Luo, Y.; Gu, T. T. et al. Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery. J. Alloys Compd. 2022, 923, 166470.

[11]

Chen, X. J.; Li, W.; Xu, Y. B.; Zeng, Z. P.; Tian, H. C.; Velayutham, M.; Shi, W. Y.; Li, W. Y.; Wang, C. M.; Reed, D. et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy 2020, 75, 104869.

[12]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

[13]

Zhao, Y. J.; Zhang, P. J.; Liang, J. R.; Xia, X. Y.; Ren, L. T.; Song, L.; Liu, W.; Sun, X. M. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433.

[14]

Tang, Y. C.; Li, X. J.; Lv, H. M.; Xie, D.; Wang, W. L.; Zhi, C. Y.; Li, H. F. Stabilized Co3+/Co4+ redox pair in situ produced CoSe2 x -derived cobalt oxides for alkaline Zn batteries with 10000-cycle lifespan and 1.9-V voltage plateau. Adv. Energy Mater. 2020, 10, 2000892.

[15]

Wang, X.; Wang, Y. M.; Jiang, Y. P.; Li, X. L.; Liu, Y.; Xiao, H. H.; Ma, Y.; Huang, Y. Y.; Yuan, G. H. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2T x MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2103210.

[16]

Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107

[17]

Shi, M. J.; Wang, B.; Shen, Y.; Jiang, J. T.; Zhu, W. H.; Su, Y. J.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627.

[18]

Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359.

[19]

Zeng, Q.; Tian, S. H.; Liu, G.; Yang, H. C.; Sun, X.; Wang, D.; Huang, J. J.; Yan, D.; Peng, S. L. Sulfur-bridged bonds boost the conversion reaction of the flexible self-supporting MnS@MXene@CNF anode for high-rate and long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 6958–6966.

[20]

Ma, L. L.; Yu, L. J.; Liu, J. C.; Su, Y. Q.; Li, S.; Zang, X. H.; Meng, T.; Zhang, S. H.; Song, J. J.; Wang, J. Y. et al. Construction of Ti4O7/TiN/carbon microdisk sulfur host with strong polar N–Ti–O bond for ultralong life lithium-sulfur battery. Energy Storage Mater. 2022, 44, 180–189.

[21]

Yang, J.; Wang, C. D.; Ju, H. X.; Sun, Y.; Xing, S. Q.; Zhu, J. F.; Yang, Q. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 2017, 27, 1703864.

[22]

Zhang, D. D.; Cao, J.; Zhang, X. Y.; Insin, N.; Wang, S. M.; Han, J. T.; Zhao, Y. S.; Qin, J. Q.; Huang, Y. H. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 2021, 31, 2009412.

[23]

Deng, X. L.; Zou, K. Y.; Momen, R.; Cai, P.; Chen, J.; Hou, H. S.; Zou, G. Q.; Ji, X. B. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 2021, 66, 1858–1868.

[24]

Yang, H.; Zhou, W. H.; Chen, D.; Liu, J. H.; Yuan, Z. Y.; Lu, M. J.; Shen, L. F.; Shulga, V.; Han, W.; Chao, D. L. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: A Mn-based competitive capacity evolution protocol. Energy Environ. Sci. 2022, 15, 1106–1118.

[25]

Zhu, C. Y.; Fang, G. Z.; Liang, S. Q.; Chen, Z. X.; Wang, Z. Q.; Ma, J. Y.; Wang, H.; Tang, B. Y.; Zheng, X. S.; Zhou, J. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394–401.

[26]

Deng, S. Z.; Tie, Z.; Yue, F.; Cao, H. M.; Yao, M. J.; Niu, Z. Q. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202115877.

[27]

Mao, M.; Wu, X. X.; Hu, Y.; Yuan, Q. H.; He, Y. B.; Kang, F. Y. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 2021, 52, 277–283.

[28]

Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M. S.; Mathew, V.; Sun, Y. K.; Hwang, J. Y. et al. In situ oriented Mn deficient ZnMn2O4@C nanoarchitecture for durable rechargeable aqueous zinc-ion batteries. Adv. Sci. 2021, 8, 2002636

[29]

Guo, X. L.; Sun, H.; Li, C. G.; Zhang, S. Q.; Li, Z. H.; Hou, X. Y.; Chen, X. B.; Liu, J. Y.; Shi, Z.; Feng, S. H. Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. J. Energy Chem. 2022, 68, 538–547.

[30]

Sun, K. S.; Shen, Y. F.; Min, J.; Pang, J. X.; Zheng, Y.; Gu, T. T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394.

[31]

Liu, Y. Z.; Qin, Z. M.; Yang, X. P.; Sun, X. Q. A long-life manganese oxide cathode material for aqueous zinc batteries with a negatively charged porous host to promote the back-deposition of dissolved Mn2+. Adv. Funct. Mater. 2022, 32, 2106994.

[32]

Tang, F.; Wu, X. S.; Shen, Y. Q.; Xiang, Y. H.; Wu, X. M.; Xiong, L. Z.; Wu, X. W. The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries. Energy Storage Mater. 2022, 52, 180–188.

[33]

Xing, S. Q.; Yang, J.; Muska, M.; Li, H. R.; Yang, Q. Rock-salt MnS0.5Se0.5 nanocubes assembled on N-doped graphene forming van der waals heterostructured hybrids as high-performance anode for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 22608–22620.

[34]

Zhu, X. D.; Li, X. Y.; Essandoh, M. L. K.; Tan, J.; Cao, Z. Y.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 2022, 50, 243–251.

[35]

Li, F.; Liu, Y. L.; Wang, G. G.; Zhang, S. Y.; Zhao, D. Q.; Fang, K.; Zhang, H. Y.; Yang, H. Y. 3D porous H-Ti3C2T x films as free-standing electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 2022, 435, 135052.

Nano Research
Pages 2781-2789
Cite this article:
Sun K, Xiao Z, Shen Y, et al. MOF-derived Se doped MnS/Ti3C2Tx as cathode and Zn-Ti3C2Tx membrane as anode for rocking-chair zinc-ion battery. Nano Research, 2024, 17(4): 2781-2789. https://doi.org/10.1007/s12274-023-6207-8
Topics:

628

Views

18

Crossref

17

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 17 July 2023
Revised: 23 August 2023
Accepted: 17 September 2023
Published: 04 November 2023
© Tsinghua University Press 2023
Return