AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries

Ahmad Shokrieh1,§Amir Hossein Mirzaei2,§Lijuan Mao1,3Mahmood M. Shokrieh2( )Zhixiang Wei1,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
University of Chinese Academy of Sciences, Beijing 100049, China

§ Ahmad Shokrieh and Amir Hossein Mirzaei contributed equally to this work.

Show Author Information

Graphical Abstract

In this study, mechanical challenges in flexible lithium-ion batteries were thoroughly reviewed and listed from component and mechanical test views. For researchers interested in mechanical challenges in FLIBs, this study provides valuable insight.

Abstract

In the past two decades, various research works have been conducted in the field of flexible electronic devices (FEDs). Researchers have focused their efforts on solving the existing challenges in the electronic, electrochemical, and mechanical behaviors of FEDs. The importance of flexible lithium-ion batteries (FLIBs) in the area of FEDs is evident; however, less attention has been paid to the mechanical behavior of FLIBs in comparison with the material and electrochemical characteristics. The present paper reviewed the research works in the FLIBs, focusing on their mechanical integrity and electrochemical performances. First, an introduction to FLIBs was presented, and the previous review papers published in this field were briefly introduced. Then, a detailed review of the available electrochemical and mechanical research works on FLIBs was presented. Moreover, the mechanical testing methods (tensile, compressive, indentation, fatigue, and adhesion) for the characterization of FLIBs’ components, the research works on the simulation and modeling of the mechanical behavior of FLIBs, and a summary of the present situation and the future trend of research in this field were reviewed and presented.

References

[1]

Corzo, D.; Tostado-Blázquez, G.; Baran, D. Flexible electronics: Status, challenges and opportunities. Front. Electron. 2020, 1, 594003.

[2]

Chen, Y. Q.; Kang, Y. Q.; Zhao, Y; Wang, L.; Liu, J.; Li, Y.; Liang, Zh.; He, X. M; Li, X.; Tavajohi N.; Li, B. H. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99.

[3]

Mackanic, D. G.; Kao, M.; Bao, Z. N. Enabling deformable and stretchable batteries. Adv. Energy Mater. 2020, 10, 2001424.

[4]

Qian, G. Y.; Liao, X. B.; Zhu, Y. X.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701.

[5]

Lyu, Z.; Lim, G. J. H.; Koh, J. J.; Li, Y.; Ma, Y. W.; Ding, J.; Wang, J. L.; Hu, Z.; Wang, J.; Chen, W. et al. Design and manufacture of 3D-printed batteries. Joule 2021, 5, 89–114.

[6]

Gaikwad, A. M.; Arias, A. C.; Steingart, D. A. Recent progress on printed flexible batteries: Mechanical challenges, printing technologies, and future prospects. Energy Technol. 2015, 3, 305–328.

[7]

Gao, H.; Li, J. R.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. The research status and challenges of shape memory polymer-based flexible electronics. Mater. Horiz. 2019, 6, 931–944.

[8]

Suo, Z. G. Mechanics of stretchable electronics and soft machines. MRS Bull. 2012, 37, 218–225.

[9]

Kermani, G.; Sahraei, E. Review: Characterization and modeling of the mechanical properties of lithium-ion batteries. Energies 2017, 10, 1730.

[10]

Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771–2805.

[11]

Fu, K. K.; Cheng, J.; Li, T.; Hu, L. B. Flexible batteries: From mechanics to devices. ACS Energy Lett. 2016, 1, 1065–1079.

[12]

Chen, J. J. Recent progress in advanced materials for lithium ion batteries. Materials 2013, 6, 156–183.

[13]

Gwon, H.; Kim, H. S.; Lee, K. U.; Seo, D. H.; Park, Y. C.; Lee, Y. S.; Ahn, B. T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283.

[14]

Jung, S. C.; Kang, Y. J.; Yoo, D. J.; Choi, J. W.; Han, Y. K. Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J. Phys. Chem. C 2016, 120, 13384–13389.

[15]

Wen, L.; Liang, J.; Chen, J.; Chu, Z. Y.; Cheng, H. M.; Li, F. Smart materials and design toward safe and durable lithium ion batteries. Small Methods 2019 , 3, 1900323.

[16]

Gwon, H.; Hong, J.; Kim, H.; Seo, D. H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 2014, 7, 538–551.

[17]

Foreman, E.; Zakri, W.; Hossein Sanatimoghaddam, M.; Modjtahedi, A.; Pathak, S.; Kashkooli, A. G.; Garafolo, N. G.; Farhad, S. A review of inactive materials and components of flexible lithium-ion batteries. Adv. Sustainable Syst. 2017, 1, 1700061.

[18]

Eh, A. L. S.; Tan, A. W. M.; Cheng, X.; Magdassi, S.; Lee, P. S. Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects. Energy Technol. 2018, 6, 33–45.

[19]

Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.

[20]

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

[21]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

[22]

Li, G. C.; Li, Z. H.; Zhang, P.; Zhang, H. P.; Wu, Y. P. Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl. Chem. 2008, 80, 2553–2563.

[23]

Le Floch, P.; Meixuanzi, S.; Tang, J. D.; Liu, J. J.; Suo, Z. G. Stretchable seal. ACS Appl. Mater. Interfaces 2018, 10, 27333–27343.

[24]

Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 2018, 4, 2786–2813.

[25]

Zhang, Y. H.; Huang, Y. G.; Rogers, J. A. Mechanics of stretchable batteries and supercapacitors. Curr. Opin. Solid State Mater. Sci. 2015, 19, 190–199.

[26]

Lewis, J. Material challenge for flexible organic devices. Mater. Today 2006, 9, 38–45.

[27]

Mao, L. J.; Meng, Q. H.; Ahmad, A.; Wei, Z. X. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 2017, 7, 1700535.

[28]

Hao, M.; Xu, J.; Wang, C.; Wu, H.; Yang, Y.; Xie, T.; Chen, X. Integrated design of bimodal porous carbon as an efficient electrode for desalination and energy storage. J. Mater. Chem. A 2019, 7, 9700–9708.

[29]

Song, J.; Kim, J.; Kang, T; Kim, D. Design of a porous cathode for ultrahigh performance of a Li-ion battery: An overlooked pore distribution. Sci Rep 2017, 7, 42521.

[30]

Zhu, L.; Li, W. X.; Xie, L. L.; Yang, Q.; Cao, X. Y. Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem. Eng. Sci. 2019, 372, 1056–1065.

[31]

Li, Y.; Hu, Z.; Wang, X.; Yu, Z. A. Design strategies for core–shell electrode materials in energy storage applications. Mater. Today Energy 2020, 17, 100432.

[32]

Hwang, J. Y.; Oh, S. M., Myung, S. T.; Chung. K. Y.; Belharouak. I.; Sun, Y. K. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun 2015, 6, 6865.

[33]

Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 2015, 27, 6504–6510.

[34]

Wu, H. P.; Shevlin, S. A.; Meng, Q. H.; Guo, W.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Guo, Z. X. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 2014, 26, 3338–3343.

[35]

Meng, Y. N.; Wu, H. P.; Zhang, Y. J.; Wei, Z. X. A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10842–10846.

[36]

Amin, K.; Meng, Q. H.; Ahmad, A.; Cheng, M.; Zhang, M.; Mao, L. J.; Lu, K.; Wei, Z. X. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 2018, 30, 1703868.

[37]

Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

[38]

Zhang, Y.; Bai, W. Y.; Ren, J.; Weng, W.; Lin, H. J.; Zhang, Z. T.; Peng, H. S. Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2014, 2, 11054–11059.

[39]

Sun, Y. G.; Choi, W. M.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006, 1, 201–207.

[40]

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

[41]

Bowman, L.; Hopewell, J. C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S. D.; Cannon, C. P.; Braunwald, E.; Sammons, E. et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 2017, 337, 1217–1227.

[42]

Park, J.; Wang, S. D.; Li, M.; Ahn, C.; Hyun, J. K.; Kim, D. S.; Kim, D. K.; Rogers, J. A.; Huang, Y. G.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 916.

[43]

Zheng, H. H.; Yang, R. Z.; Liu, G.; Song, X. Y.; Battaglia, V. S. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J. Phys. Chem. C 2012, 116, 4875–4882.

[44]

Müller, S.; Pietsch, P.; Brandt, B. E.; Baade, P.; De Andrade, V.; De Carlo, F.; Wood, V. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat. Commun. 2018, 9, 2340.

[45]

Gordon, R.; Orias, R.; Willenbacher, N. Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers. J. Mater. Sci. 2020, 55, 15867–15881.

[46]

Luo, H. L.; Xia, Y.; Zhou, Q. Mechanical damage in a lithium-ion pouch cell under indentation loads. J. Power Sources 2017, 357, 61–70.

[47]

Shi, Y.; Wen, L.; Zhou, G. M.; Chen, J.; Pei, S. F.; Huang, K.; Cheng, H. M.; Li, F. Graphene-based integrated electrodes for flexible lithium ion batteries. 2D Mater. 2015, 2, 024004.

[48]
Bao, Y. H.; Liu, Y.; Kuang, Y. D.; Fang, D. N.; Li, T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Mater. 2020 , 33, 55–61.
[49]
Liu, W.; Chen, Z.; Zhou, G. M.; Sun, Y. M.; Lee, H. R.; Liu, C.; Yao, H. B.; Bao, Z. N.; Cui, Y. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 2016 , 28, 3578–3583.
[50]

Ma, L.; Lu, D.; Yang, P.; Xi, X.; Liu, R. L.; Wu, D. Q. Solution-processed organic PDI/CB/TPU cathodes for flexible lithium ion batteries. Electrochim. Acta 2019, 319, 201–209.

[51]

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

[52]

Idris, N. H.; Rahman, M. M.; Wang, J. Z.; Liu, H. K. Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 2012, 201, 294–300.

[53]
Lu, R. C.; Shokrieh, A.; Li, C. F.; Zhang, B. B.; Amin, K.; Mao, L. J.; Wei, Z. X. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy 2022 , 95, 107009.
[54]

Kim, J. I.; Choi, Y.; Chung, K. Y.; Park, J. H. A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 2017, 27, 1701768.

[55]

Raghavan, P.; Manuel, J.; Zhao, X. H.; Kim, D. S.; Ahn, J. H.; Nah, C. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J. Power Sources 2011, 196, 6742–6749.

[56]

Orendorff, C. J.; Lambert, T. N.; Chavez, C. A.; Bencomo, M.; Fenton, K. R. Polyester separators for lithium-ion cells: Improving thermal stability and abuse tolerance. Adv. Energy Mater. 2013, 3, 314–320.

[57]
Wang, Z. Y.; Shen, L.; Deng, S. G.; Cui, P.; Yao, X. Y. 10 μm-Thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 2021 , 33, 2100353.
[58]

Wang, G. X.; He, P. G.; Fan, L. Z. Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 2021, 31, 2007198.

[59]

Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938–944.

[60]

Mackanic, D. G.; Yan, X. Z.; Zhang, Q. H.; Matsuhisa, N.; Yu, Z. A.; Jiang, Y. W.; Manika, T.; Lopez, J.; Yan, H. P.; Liu, K. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 2019, 10, 5384.

[61]

Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016, 22, 278–289.

[62]

Haworth, J. P.; Baldwin, F. P. Butyl rubber properties and compounding. Ind. Eng. Chem. 1942, 34, 1301–1308.

[63]

Kim, D. H.; Ghaffari, R.; Lu, N. S.; Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128.

[64]

Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

[65]

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

[66]

Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228–2246.

[67]
Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013 , 25, 5997–6038.
[68]
Von Ahn, L.; Maurer, B.; McMillen, C.; Abraham, D.; Blum, M. reCAPTCHA: Human-based character recognition via web security measures. Science 2008 , 321, 1465–1468.
[69]

Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

[70]

Shepherd, R. F.; Ilievski, F.; Choi, W.; Morin, S. A.; Stokes, A. A.; Mazzeo, A. D.; Chen, X.; Wang, M.; Whitesides, G. M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403.

[71]

Tolley, M. T.; Shepherd, R. F.; Mosadegh, B.; Galloway, K. C.; Wehner, M.; Karpelson, M.; Wood, R. J.; Whitesides, G. M. A resilient, untethered soft robot. Soft Robot. 2014, 1, 213–223.

[72]

Wang, C. J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z. Y.; Li, Y. H.; Chen, W. Q.; Song, J. Z.; Verduzco, R.; Yu, C. J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695.

[73]

Han, J.; Lee, J. Y.; Lee, J.; Yeo, J. S. Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater. 2018, 30, 1704626.

[74]

Dickey, M. D.; Chiechi, R. C.; Larsen, R. J.; Weiss, E. A.; Weitz, D. A.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104.

[75]

Celle, C.; Cabos, A.; Fontecave, T.; Laguitton, B.; Benayad, A.; Guettaz, L.; Pélissier, N.; Nguyen, V. H.; Bellet, D.; Muñoz-Rojas, D. et al. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: Application to transparent film heaters. Nanotechnology 2018, 29, 085701.

[76]

Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

[77]

Le Floch, P.; Yao, X.; Liu, Q. H.; Wang, Z. J.; Nian, G. D.; Sun, Y.; Jia, L.; Suo, Z. G. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 2017, 9, 25542–25552.

[78]

Jansen, A. N.; Amine, K.; Newman, A. E.; Vissers, D. R.; Henriksen, G. L. Low-cost, flexible battery packaging materials. JOM 2002, 54, 29–32.

[79]

Yang, X. Y.; Xu, J. J.; Bao, D.; Chang, Z. W.; Liu, D. P.; Zhang, Y.; Zhang, X. B. High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer. Adv. Mater. 2017, 29, 1700378.

[80]

Chen, P. Y.; Zhang, M. K.; Liu, M. C.; Wong, I. Y.; Hurt, R. H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 2018, 12, 234–244.

[81]

Noh, M. J.; Oh, M. J.; Choi, J. H.; Yu, J. C.; Kim, W. J.; Park, J.; Chang, Y. W.; Yoo, P. J. Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films. Soft Matter 2018, 14, 6708–6715.

[82]
Kelly, T.; Ghadi, B. M.; Berg, S.; Ardebili, H. In situ study of strain-dependent ion conductivity of stretchable polyethylene oxide electrolyte. Sci. Rep. 2016 , 6, 20128.
[83]

Berg, S.; Kelly, T.; Porat, I.; Moradi-Ghadi, B.; Ardebili, H. Mechanical deformation effects on ion conduction in stretchable polymer electrolytes. Appl. Phys. Lett. 2018, 113, 083903.

[84]

Wang, L. B.; Yin, S.; Zhang, C.; Huan, Y.; Xu, J. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries. J. Power Sources 2018, 392, 265–273.

[85]

Kalnaus, S.; Wang, Y. L.; Turner, J. A. Mechanical behavior and failure mechanisms of Li-ion battery separators. J. Power Sources 2017, 348, 255–263.

[86]

de Vasconcelos, L. S.; Xu, R.; Li, J. L.; Zhao, K. J. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mech. Lett. 2016, 9, 495–502.

[87]

Boles, S. T.; Sedlmayr, A.; Kraft, O.; Mönig, R. In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications. Appl. Phys. Lett. 2012, 100, 243901.

[88]

Müller, V.; Scurtu, R. G.; Memm, M.; Danzer, M. A.; Wohlfahrt-Mehrens, M. Study of the influence of mechanical pressure on the performance and aging of Lithium-ion battery cells. J. Power Sources 2019, 440, 227148.

[89]

Sahraei, E.; Hill, R.; Wierzbicki, T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J. Power Sources 2012, 201, 307–321.

[90]

Lai, W. J.; Ali, M. Y.; Pan, J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J. Power Sources 2014, 245, 609–623.

[91]

Yu, Y. S.; Xiong, B. J.; Zeng, F. X. Y.; Xu, R. Z.; Yang, F.; Kang, J.; Xiang, M.; Li, L.; Sheng, X. Y.; Hao, Z. H. Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries. Ind. Eng. Chem. Res. 2018, 57, 17142–17151.

[92]

Sauerteig, D.; Hanselmann, N.; Arzberger, A.; Reinshagen, H.; Ivanov, S.; Bund, A. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries. J. Power Sources 2018, 378, 235–247.

[93]

Xu, J.; Liu, B. H.; Wang, L. B.; Shang, S. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing. Eng. Fail. Anal. 2015, 53, 97–110.

[94]

Sepúlveda, A.; Speulmanns, J.; Vereecken, P. M. Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery. Sci. Technol. Adv. Mater. 2018, 19, 454–464.

[95]

Xu, J.; Wang, L.; Guan, J. B.; Yin, S. Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries. Mater. Des. 2016, 95, 319–328.

[96]

Chen, Y. Y.; Santhanagopalan, S.; Babu, V.; Ding, Y. Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact. Compos. Struct. 2019, 218, 50–59.

[97]

Chen, X. P.; Wang, T.; Zhang, Y.; Ji, H. B.; Ji, Y. P.; Yuan, Q. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact. Int. J. Energy Res. 2019, 43, 7421–7432.

[98]

Li, J. C.; Zhang, Q. L.; Xiao, X. C.; Cheng, Y. T.; Liang, C. D.; Dudney, N. J. Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 13732–13735.

[99]

Meng, Q. H.; Wu, H. P.; Mao, L. J.; Yuan, H. X.; Ahmad, A.; Wei, Z. X. Combining electrode flexibility and wave-like device architecture for highly flexible Li-ion batteries. Adv. Mater. Technol. 2017, 2, 1700032.

[100]

Zamarayeva, A. M.; Ostfeld, A. E.; Wang, M.; Duey, J. K.; Deckman, I.; Lechêne, B. P.; Davies, G.; Steingart, D. A.; Arias, A. C. Flexible and stretchable power sources for wearable electronics. Sci. Adv. 2017, 3, e1602051.

[101]

Gaikwad, A. M.; Khau, B. V.; Davies, G.; Hertzberg, B.; Steingart, D. A.; Arias, A. C. A high areal capacity flexible lithium-ion battery with a strain-compliant design. Adv. Energy Mater. 2015, 5, 1401389.

[102]

Xu, J.; Liu, B. H.; Hu, D. Y. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries. Sci. Rep. 2016, 6, 21829.

[103]

Bai, Y.; Zhao, K. J.; Liu, Y.; Stein, P.; Xu, B. X. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion battery materials. Scr. Mater. 2020, 183, 45–49.

[104]

Sahraei, E.; Kahn, M.; Meier, J.; Wierzbicki, T. Modelling of cracks developed in lithium-ion cells under mechanical loading. RSC Adv. 2015, 5, 80369–80380.

[105]

Zhang, C.; Xu, J.; Cao, L.; Wu, Z. N.; Santhanagopalan, S. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries. J. Power Sources 2017, 357, 126–137.

[106]

Wang, L. B.; Duan, X. D.; Liu, B. H.; Li, Q. M.; Yin, S.; Xu, J. Deformation and failure behaviors of anode in lithium-ion batteries: Model and mechanism. J. Power Sources 2020, 448, 227468.

[107]

McGrogan, F. P.; Raja, S. N.; Chiang, Y. M.; Van Vliet, K. J. Electrochemomechanical fatigue: Decoupling mechanisms of fracture-induced performance degradation in Li X Mn2O4. J. Electrochem. Soc. 2018, 165, A2458–A2466.

[108]

Jia, Y. K.; Yin, S.; Liu, B. H.; Zhao, H.; Yu, H. L.; Li, J.; Xu, J. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 2019, 166, 951–960.

[109]

Wang, Z. F.; Mo, F. N.; Ma, L. T.; Yang, Q.; Liang, G. J.; Liu, Z. X.; Li, H. F.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl. Mater. Interfaces 2018, 10, 44527–44534.

[110]

Kim, T. W.; Lee, J. S.; Kim, Y. C.; Joo, Y. C.; Kim, B. J. Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates. Materials 2019, 12, 2490.

[111]

Kammoun, M.; Berg, S.; Ardebili, H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale 2015, 7, 17516–17522.

[112]

Yoon, I.; Jurng, S.; Abraham, D. P.; Lucht, B. L.; Guduru, P. R. Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries. Energy Storage Mater. 2020, 25, 296–304.

[113]

Xu, C. J.; Weng, L.; Ji, L.; Zhou, J. Q. An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur. J. Mech. A Solids. 2019, 73, 47–56.

[114]

Greve, L.; Fehrenbach, C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells. J. Power Sources 2012, 214, 377–385.

[115]

Deshpande, R. D.; Bernardi, D. M. Modeling solid-electrolyte interphase (SEI) fracture: Coupled mechanical/chemical degradation of the lithium ion battery. J. Electrochem. Soc. 2017, 164, A461–A474.

[116]

Mei, W. X.; Duan, Q. L.; Lu, W.; Sun, J. H.; Wang, Q. S. An investigation on expansion behavior of lithium ion battery based on the thermal-mechanical coupling model. J. Clean. Prod. 2020, 274, 122643.

[117]

Fu, R. J.; Xiao, M.; Choe, S. Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery. J. Power Sources 2013, 224, 211–224.

[118]

Peabody, C.; Arnold, C. B. The role of mechanically induced separator creep in lithium-ion battery capacity fade. J. Power Sources 2011, 196, 8147–8153.

[119]

Liu, B. H.; Zhao, H.; Yu, H. L.; Li, J.; Xu, J. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading. Electrochim. Acta 2017, 256, 172–184.

[120]

Miehe, C.; Dal, H.; Schänzel, L. M.; Raina, A. A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int. J. Numer. Methods Eng. 2016, 106, 683–711.

[121]

Giménez, C. S.; Finke, B.; Nowak, C.; Schilde, C.; Kwade, A. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations. Adv. Powder Technol. 2018, 29, 2312–2321.

[122]

Sangrós Giménez, C.; Schilde, C.; Froböse, L.; Ivanov, S.; Kwade, A. Mechanical, electrical, and ionic behavior of lithium-ion battery electrodes via discrete element method simulations. Energy Technol. 2020, 8, 1900180.

[123]

Hofmann, T.; Westhoff, D.; Feinauer, J.; Andrä, H.; Zausch, J.; Schmidt, V.; Müller, R. Electro-chemo-mechanical simulation for lithium ion batteries across the scales. Int. J. Solids Struct. 2020, 184, 24–39.

Nano Research
Pages 12962-12982
Cite this article:
Shokrieh A, Mirzaei AH, Mao L, et al. A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries. Nano Research, 2023, 16(12): 12962-12982. https://doi.org/10.1007/s12274-023-6211-z
Topics:
Part of a topical collection:

750

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 24 May 2023
Revised: 08 September 2023
Accepted: 18 September 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return