AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microfluidic one-step, aqueous synthesis of size-tunable zeolitic imidazolate framework-8 for protein delivery

Wenxing Lv1,3Ziwei Han2( )Shaokun Dong1,3Yanjuan Huang1,3Jinqi Deng1,3Chao Liu1,3Qiang Feng1,4( )Jiashu Sun1,2,3( )
Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas 75390, USA
Show Author Information

Graphical Abstract

We report a microfluidic reactor for one-step, ultrafast synthesis of size-tunable protein-loaded ZIF-8 nanoparticles in aqueous phase.

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) with porous structure, biocompatibility, and pH-sensitive release behavior is a promising nanoplatform for protein delivery. However, it is still a challenging task for a practical synthesis of protein-loaded ZIF-8 nanoparticles. Here we report an all-aqueous microfluidic reactor for one-step, rapid, and highly controlled synthesis of ZIF-8 nanoparticles with high protein loading at room temperature. Microfluidic reactor allows for an ultrafast (< 35 ms), complete mixing of Zn2+ ions and 2-methylimidazole (2-MIM) at different molecular ratios, leading to the formation of stable ZIF-8 nanoparticles with tunable sizes (13.2–191.4 nm) in less than 30 s. By pre-mixing various proteins such as bovine serum albumin (BSA) (isoelectric point (pI) = 5.82), ovalbumin (OVA) (pI = 4.82), or RNase A (pI = 8.93) with 2-MIM, ZIF-8 nanoparticles can be synthesized with protein encapsulation efficiency over 97%. Among the nanoparticles with different sizes, 25 nm ZIF-8 nanoparticles show the best performance in promoting the cellular uptake of protein payload. Using OVA as a model protein, we demonstrate that 25 nm ZIF-8 nanoparticles significantly enhance the cytosolic delivery of antigen, as indicated by the effective activation of dendritic cells. We anticipate that this microfluidic synthesis of nanomaterials may advance the emerging field of cytosolic protein delivery.

Electronic Supplementary Material

Download File(s)
12274_2023_6213_MOESM1_ESM.pdf (4.9 MB)

References

[1]

Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J. M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014 , 515, 568–571.

[2]

Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

[3]

Long, Q. X.; Liu, B. Z.; Deng, H. J.; Wu, G. C.; Deng, K.; Chen, Y. K.; Liao, P.; Qiu, J. F.; Lin, Y.; Cai, X. F. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848.

[4]

Topalian, S. L.; Hodi, F. S.; Brahmer, J. R.; Gettinger, S. N.; Smith, D. C.; McDermott, D. F.; Powderly, J. D.; Carvajal, R. D.; Sosman, J. A.; Atkins, M. B. et al. Safety, Activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454.

[5]

Abate, M. F.; Ahmed, M. G.; Li, X. R.; Yang, C. Y.; Zhu, Z. Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G. Lab Chip 2020, 20, 3625–3632.

[6]

Fu, G. L.; Hou, R. X.; Mou, X. B.; Li, X. J. Integration and quantitative visualization of 3,3′,5,5′-tetramethylbenzidine-probed enzyme-linked immunosorbent assay-like signals in a photothermal bar-chart microfluidic chip for multiplexed immunosensing. Anal. Chem. 2021, 93, 15105–15114.

[7]

Shen, H. C.; Chen, X. Y.; Zeng, L. Q.; Xu, X.; Tao, Y. Z.; Kang, S. Y.; Lu, Y. Z.; Lian, M. J.; Yang, C. Y.; Zhu, Z. Magnetofluid-integrated multicolor immunochip for visual analysis of neutralizing antibodies to SARS-CoV-2 variants. Anal. Chem. 2022, 94, 8458–8465.

[8]

Zhao, X. Y.; Chen, Y. F.; Su, H.; Zhang, L. Q. From classic medicinal chemistry to state-of-the-art interdisciplinary medicine: Recent advances in proteolysis-targeting chimeras technology. Interdiscip. Med. 2023, 1, e20230004.

[9]

Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.

[10]

Qin, X. F.; Yu, C. M.; Wei, J.; Li, L.; Zhang, C. W.; Wu, Q.; Liu, J. H.; Yao, S. Q.; Huang, W. Rational design of nanocarriers for intracellular protein delivery. Adv. Mater. 2019, 31, 1902791.

[11]

Ren, L. F.; Lv, J.; Wang, H.; Cheng, Y. Y. A coordinative dendrimer achieves excellent efficiency in cytosolic protein and peptide delivery. Angew. Chem., Int. Ed. 2020, 59, 4711–4719.

[12]

Xie, R. S.; Wang, X. X.; Wang, Y. Y.; Ye, M. Z.; Zhao, Y.; Yandell, B. S.; Gong, S. Q. pH-responsive polymer nanoparticles for efficient delivery of Cas9 ribonucleoprotein with or without donor DNA. Adv. Mater. 2022 , 34, 2110618.

[13]

Zhou, Y.; Gao, Y. F.; Pang, L.; Kang, W. R.; Man, K.; Wang, W. P. A green light-enhanced cytosolic protein delivery platform based on BODIPY-protein interactions. Nano Res. 2023, 16, 1042–1051.

[14]

Teplensky, M. H.; Evangelopoulos, M.; Dittmar, J. W.; Forsyth, C. M.; Sinegra, A. J.; Wang, S. Y.; Mirkin, C. A. Multi-antigen spherical nucleic acid cancer vaccines. Nat. Biomed. Eng. 2023, 7, 911–927.

[15]

Sa-Nguanmoo, N.; Namdee, K.; Khongkow, M.; Ruktanonchai, U.; Zhao, Y. X.; Liang, X. J. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Res. 2022, 15, 2196–2225.

[16]

Zhang, P.; Du, C. Y.; Huang, T. H.; Hu, S.; Bai, Y. C.; Li, C.; Feng, G. B.; Gao, Y.; Li, Z.; Wang, B. X. et al. Surface adsorption-mediated ultrahigh efficient peptide encapsulation with a precise ratiometric control for type 1 and 2 diabetic therapy. Small 2022, 18, 2200449.

[17]

Wang, Y. H.; Zhan, J.; Huang, J. Y.; Wang, X.; Chen, Z. H.; Yang, Z. M.; Li, J. Dynamic responsiveness of self-assembling peptide-based nano-drug systems. Interdiscip. Med. 2023, 1, e20220005.

[18]

Chen, T. T.; Yi, J. T.; Zhao, Y. Y.; Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J. Am. Chem. Soc. 2018, 140, 9912–9920.

[19]

Zhang, G. Q.; Fu, X.; Sun, H. F.; Zhang, P. Y.; Zhai, S. M.; Hao, J. C.; Cui, J. W.; Hu, M. Poly(ethylene glycol)-mediated assembly of vaccine particles to improve stability and immunogenicity. ACS Appl. Mater. Interfaces 2021, 13, 13978–13989.

[20]

Zhang, Y.; Wang, F. M.; Ju, E. G.; Liu, Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 2016, 26, 6454–6461.

[21]

Lv, M. Z.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J. F.; Wang, Z. H.; Li, X. J. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens. Bioelectron. 2021, 176, 112947.

[22]

Tang, J. K.; Liu, J.; Zheng, Q. Z.; Li, W. T.; Sheng, J. H.; Mao, L. Q.; Wang, M. In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 22315–22321.

[23]

Zheng, Q. Z.; Li, W. T.; Mao, L. Q.; Wang, M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater. Sci. 2021, 9, 7024–7033.

[24]

Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073.

[25]

Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280.

[26]

Jiang, X.; He, S. S.; Han, G.; Long, J.; Li, S. W.; Lau, C. H.; Zhang, S.; Shao, L. Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl. Mater. Interfaces 2021, 13, 11296–11305.

[27]

Balachandran, Y. L.; Li, X. Y.; Jiang, X. Y. Integrated microfluidic synthesis of aptamer functionalized biozeolitic imidazolate framework (BioZIF-8) targeting lymph node and tumor. Nano Lett. 2021, 21, 1335–1344.

[28]

Qiu, J. G.; Tomeh, M. A.; Jin, Y.; Zhang, B.; Zhao, X. B. Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J. Colloid Interface Sci. 2023, 642, 810–819.

[29]

Kolmykov, O.; Commenge, J. M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 2017, 122, 31–41.

[30]

Jian, M. P.; Liu, B.; Liu, R. P.; Qu, J. H.; Wang, H. T.; Zhang, X. W. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015, 5, 48433–48441.

[31]

Yamamoto, D.; Maki, T.; Watanabe, S.; Tanaka, H.; Miyahara, M. T.; Mae, K. Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chem. Eng. J. 2013, 227, 145–150.

[32]

Liu, X.; Yi, Q. L.; Han, Y. Z.; Liang, Z. N.; Shen, C. H.; Zhou, Z. Y.; Sun, J. L.; Li, Y. Z.; Du, W. B.; Cao, R. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. Angew. Chem., Int. Ed. 2015, 54, 1846–1850.

[33]

Han, Z. W.; Lv, W. X.; Li, Y. K.; Chang, J. Q.; Zhang, W.; Liu, C.; Sun, J. S. Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl. Bio Mater. 2020, 3, 2666–2673.

[34]

Zhang, L.; Feng, Q.; Wang, J. L.; Zhang, S.; Ding, B. Q.; Wei, Y. J.; Dong, M. D.; Ryu, J. Y.; Yoon, T. Y.; Shi, X. H. et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: Understanding flexibility-regulated cell-nanoparticle interaction. ACS Nano 2015, 9, 9912–9921.

[35]

Liu, C.; Zhang, W.; Li, Y. K.; Chang, J. Q.; Tian, F.; Zhao, F. H.; Ma, Y.; Sun, J. S. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett. 2019, 19, 7836–7844.

[36]

Patil, S. F.; Borhade, A. V.; Nath, M. Diffusivity of zinc and cobalt ions in aqueous electrolyte solutions. Appl. Radiat. Isot. 1994, 45, 1–3.

[37]

Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2010, 107, 9938–9943.

[38]

Squires, T. M.; Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026.

[39]

Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. Crystengcomm 2013, 15, 1794–1801.

[40]

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

[41]

Wang, K.; Qian, M. P.; Qi, H. L.; Gao, Q.; Zhang, C. X. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale 2020, 12, 15663–15669.

[42]

Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

[43]

Linnane, E.; Haddad, S.; Melle, F.; Mei, Z. H.; Fairen-Jimenez, D. The uptake of metal-organic frameworks: A journey into the cell. Chem. Soc. Rev. 2022, 51, 6065–6086.

[44]

Min, Y. Z.; Roche, K. C.; Tian, S. M.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S. J.; Herring, L. E.; Zhang, L. Z.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.

[45]

Wculek, S. K.; Cueto, F. J.; Mujal, A. M.; Melero, I.; Krummel, M. F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24.

[46]

Turubanova, V. D.; Balalaeva, I. V.; Mishchenko, T. A.; Catanzaro, E.; Alzeibak, R.; Peskova, N. N.; Efimova, I.; Bachert, C.; Mitroshina, E. V.; Krysko, O. et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J. Immunother. Cancer 2019, 7, 350.

[47]

Dearman, R. J.; Cumberbatch, M.; Maxwell, G.; Basketter, D. A.; Kimber, I. Toll-like receptor ligand activation of murine bone marrow-derived dendritic cells. Immunology 2009, 126, 475–484.

[48]

Yamada, H.; Arai, T.; Endo, N.; Yamashita, K.; Fukuda, K.; Sasada, M.; Uchiyama, T. LPS-induced ROS generation and changes in glutathione level and their relation to the maturation of human monocyte-derived dendritic cells. Life Sci. 2006 , 78, 926–933.

[49]

Kantengwa, S.; Jornot, L.; Devenoges, C.; Nicod, L. P. Superoxide anions induce the maturation of human dendritic cells. Am. J. Respir. Crit. Care Med. 2003, 167, 431–437.

[50]

Xu, M. R.; Hu, Y.; Ding, W. P.; Li, F. F.; Lin, J.; Wu, M.; Wu, J. J.; Wen, L. P.; Qiu, B. S.; Wei, P. F. et al. Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 2020, 258, 120308.

[51]

Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X. Z.; deMello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J. et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21.

Nano Research
Pages 13409-13418
Cite this article:
Lv W, Han Z, Dong S, et al. Microfluidic one-step, aqueous synthesis of size-tunable zeolitic imidazolate framework-8 for protein delivery. Nano Research, 2023, 16(12): 13409-13418. https://doi.org/10.1007/s12274-023-6213-x
Topics:
Part of a topical collection:

623

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 03 July 2023
Revised: 14 September 2023
Accepted: 18 September 2023
Published: 16 October 2023
© Tsinghua University Press 2023
Return