AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents

Huan Zhang1,2Xiao Li Liu3,4,5Hai Ming Fan1,3( )
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
Department of Radiology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
Show Author Information

This work is dedicated to my mentor, Prof. Sishen Xie, an esteemed academician of Chinese Academy of Sciences. His pioneering work in the field of nanoscience and nanotechnology, along with his significant contributions to promoting the development of nanomedicine in China, have left a lasting impact on the scientific community. Professor Xie's dedication and scientific spirit have served as an inspiration for many young scientists, motivating them to pursue their research with passion and excellence. By honoring his legacy, we will continue to advance the frontiers of nanoscience in the medical field and strive to make remarkable contributions that will ultimately benefit human health.

Graphical Abstract

Magnetic nanoparticles have significantly enhanced the sensitivity, specificity, and versatility of magnetic resonance imaging (MRI), improving efficacy in blood pool imaging, targeted imaging, stimulus-responsive imaging, ultra-high field imaging, and cell tracking.

Abstract

Magnetic resonance imaging (MRI) has revolutionized medical imaging diagnostics with the advantages of non-invasive nature, absence of ionizing radiation, unrestricted penetration depth, high-resolution imaging of soft tissues, organs and blood vessels, and multi-parameter and multi-sequence imaging. Contrast agents (CAs) are crucial for enhancing image quality, detecting molecular-level changes, and providing comprehensive diagnostic information in contrast enhanced MRI. However, the performance of clinical Gd-based CAs represents a limitation to the improvement of MRI sensitivity, specificity, and versatility, thereby impeding the achievement of satisfactory imaging outcomes. In recent years, the development of magnetic nanoparticle-based CAs has emerged as a promising avenue to enhance the capabilities of MRI. Here, we review the advances in magnetic nanoparticle-based MRI CAs, including blood pool CAs, biochemically-targeted CAs, stimulus-responsive CAs, and ultra-high field MRI CAs, as well as the use of CAs for cell labeling and tracking. Additionally, we offer insights into the future prospects and challenges associated with the integration of these nanoparticles into clinical practice.

References

[1]

Rowe, S. P.; Pomper, M. G. Molecular imaging in oncology: Current impact and future directions. CA: Cancer J. Clin. 2022, 72, 333–352.

[2]

Kircher, M. F.; Willmann, J. K. Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 2012, 263, 633–643.

[3]

Kircher, M. F.; Willmann, J. K. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 2012, 264, 349–368.

[4]

Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.

[5]

Park, S. M.; Aalipour, A.; Vermesh, O.; Yu, J. H.; Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014.

[6]

Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

[7]

Na, H. B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267–6273.

[8]

Mulé, S.; Pregliasco, A. G.; Tenenhaus, A.; Kharrat, R.; Amaddeo, G.; Baranes, L.; Laurent, A.; Regnault, H.; Sommacale, D.; Djabbari, M. et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma. Radiology 2020, 295, 562–571.

[9]

Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2019, 119, 957–1057.

[10]

Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2011, 133, 12624–12631.

[11]

Gale, E. M.; Wey, H. Y.; Ramsay, I.; Yen, Y. F.; Sosnovik, D. E.; Caravan, P. A manganese-based alternative to gadolinium: Contrast-enhanced MR angiography, excretion, pharmacokinetics, and metabolism. Radiology 2018, 286, 865–872.

[12]

Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Q. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539.

[13]

Kwon, H. J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B. H.; Kim, D.; Hyeon, T. Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv. Mater. 2018, 30, 1704290.

[14]

Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, 1804567.

[15]

Shen, Z. Y.; Chen, T. X.; Ma, X. H.; Ren, W. Z.; Zhou, Z. J.; Zhu, G. Z.; Zhang, A.; Liu, Y. J.; Song, J. B.; Li, Z. H. et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017, 11, 10992–11004.

[16]

Zeng, J. F.; Jing, L. H.; Hou, Y.; Jiao, M. X.; Qiao, R. R.; Jia, Q. J.; Liu, C. Y.; Fang, F.; Lei, H.; Gao, M. Y. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: Towards high performance MRI contrast agents. Adv. Mater. 2014, 26, 2694–2698.

[17]

Yang, L. J.; Wang, Z. Y.; Ma, L. C.; Li, A.; Xin, J. Y.; Wei, R. X.; Lin, H. Y.; Wang, R. F.; Chen, Z.; Gao, J. H. The roles of morphology on the relaxation rates of magnetic nanoparticles. ACS Nano 2018, 12, 4605–4614.

[18]

Zhang, H.; Li, L.; Liu, X. L.; Jiao, J.; Ng, C. T.; Yi, J. B.; Luo, Y. E.; Bay, B. H.; Zhao, L. Y.; Peng, M. L. et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano 2017, 11, 3614–3631.

[19]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[20]

Liu, X. L.; Zhang, H.; Zhang, T. B.; Wang, Y. Y.; Jiao, W. B.; Lu, X. F.; Gao, X.; Xie, M. M.; Shan, Q. F.; Wen, N. N. et al. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog. Biomed. Eng. 2022, 4, 012005.

[21]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[22]

Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

[23]

Wang, Y. X. J. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 2015, 21, 13400–13402.

[24]

Ni, D. L.; Bu, W. B.; Ehlerding, E. B.; Cai, W. B.; Shi, J. L. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468.

[25]

Barrow, M.; Taylor, A.; Murray, P.; Rosseinsky, M. J.; Adams, D. J. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev. 2015, 44, 6733–6748.

[26]

Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.

[27]

Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev. 1987, 87, 901–927.

[28]

Wang, Y. X. J.; Hussain, S. M.; Krestin, G. P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001, 11, 2319–2331.

[29]

Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001–1005.

[30]

Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 2006, 18, 2553–2556.

[31]

Qiao, R. R.; Yang, C. H.; Gao, M. Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293.

[32]

Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.

[33]

Cheon, J.; Lee, J. H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41, 1630–1640.

[34]

Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo1, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

[35]

Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

[36]

Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; van de Kaa, C. H.; de la Rosette, J.; Weissleder, R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 2003, 348, 2491–2499.

[37]

Low, R. N. Contrast agents for MR imaging of the liver. J. Magn. Reson. Imaging 1997, 7, 56–67.

[38]

Semelka, R. C.; Helmberger, T. K. G. Contrast agents for MR imaging of the liver. Radiology 2001, 218, 27–38.

[39]

Balci, N. C.; Semelka, R. C. Contrast agents for MR imaging of the liver. Radiol. Clin. North Am. 2005, 43, 887–898.

[40]

Bashir, M. R.; Bhatti, L.; Marin, D.; Nelson, R. C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 2015, 41, 884–898.

[41]

Shahrouki, P.; Khan, S. N.; Yoshida, T.; Iskander, P. J.; Ghahremani, S.; Finn, J. P. High-resolution three-dimensional contrast-enhanced magnetic resonance venography in children: Comparison of gadofosveset trisodium with ferumoxytol. Pediatr. Radiol. 2022, 52, 501–512.

[42]

Stabi, K. L.; Bendz, L. M. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann. Pharmacother. 2011, 45, 1571–1575.

[43]

Bashir, M. R.; Jaffe, T. A.; Brennan, T. V.; Patel, U. D.; Ellis, M. J. Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 2013, 96, 91–96.

[44]

Ruangwattanapaisarn, N.; Hsiao, A.; Vasanawala, S. S. Ferumoxytol as an off-label contrast agent in body 3T MR angiography: A pilot study in children. Pediatr. Radiol. 2015, 45, 831–839.

[45]

Bowman, A. W.; Gooch, C. R.; Alexander, L. F. Desai, M. A.; Bolan, C. W. Vascular applications of ferumoxytol-enhanced magnetic resonance imaging of the abdomen and pelvis. Abdom. Radiol. 2021, 46, 2203–2218.

[46]

Sigovan, M.; Gasper, W.; Alley, H. F.; Owens, C. D.; Saloner, D. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology 2012, 265, 584–590

[47]

Hansch, A.; Betge, S.; Poehlmann, G.; Neumann, S.; Baltzer, P.; Pfeil, A.; Waginger, M.; Boettcher, J.; Kaiser, W. A.; Wolf, G. et al. Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent. Eur. Radiol. 2011, 21, 318–325.

[48]

Thompson, E. M.; Guillaume, D. J.; Dósa, E.; Li, X.; Nazemi, K. J.; Gahramanov, S.; Hamilton, B. E.; Neuwelt, E. A. Dual contrast perfusion MRI in a single imaging session for assessment of pediatric brain tumors. J. Neuro-Oncol. 2012, 109, 105–114.

[49]

Dósa, E.; Tuladhar, S.; Muldoon, L. L.; Hamilton, B. E.; Rooney, W. D.; Neuwelt, E. A. MRI using Ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke 2011, 42, 1581–1588.

[50]

Gharagouzloo, C. A.; McMahon, P. N.; Sridhar, S. Quantitative contrast-enhanced MRI with superparamagnetic nanoparticles using ultrashort time-to-echo pulse sequences. Magn. Reson. Med. 2015, 74, 431–441.

[51]

Niendorf, T.; Seeliger, E.; Cantow, K.; Flemming, B.; Waiczies, S.; Pohlmann, A. Probing renal blood volume with magnetic resonance imaging. Acta Physiol. 2020, 228, e13435.

[52]

Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.

[53]

Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.

[54]

Lu, X. Y.; Zhou, H. M.; Liang, Z. Y.; Feng, J.; Lu, Y. D.; Huang, L.; Qiu, X. Z.; Xu, Y. K.; Shen, Z. Y. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors. J. Nanobiotechnol. 2022, 30, 350.

[55]

Lu, Y.; Xu, Y. J.; Zhang, G. B.; Ling, D. S.; Wang, M. Q.; Zhou, Y.; Wu, Y. D.; Wu, T.; Hackett, M. J.; Kim, B. H. et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 2017, 1, 637–643.

[56]

Wei, H.; Bruns, O. T.; Kaul, M. G.; Hansen, E. C.; Barch, M.; Wiśniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S. et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA 2017, 114, 2325–2330.

[57]

Miao, Y. Q.; Zhang, H.; Cai, J.; Chen, Y. M.; Ma, H. J.; Zhang, S.; Yi, J. B.; Liu, X. L.; Bay, B. H.; Guo, Y. K. et al. Structure–relaxivity mechanism of an ultrasmall ferrite nanoparticle T1 MR contrast agent: The impact of dopants controlled crystalline core and surface disordered shell. Nano Lett. 2021, 21, 1115–1123.

[58]

Shen, Z. Y.; Song, J. B.; Zhou, Z. J.; Yung, B. C.; Aronova, M. A.; Li, Y.; Dai, Y. L.; Fan, W. P.; Liu, Y. J.; Li, Z. H. et al. Dotted core–shell nanoparticles for T1-weighted MRI of tumors. Adv. Mater. 2018, 30, 1803163.

[59]

Wei, Z. N.; Jiang, Z. Q.; Pan, C. S.; Xia, J. B.; Xu, K. W.; Xue, T.; Yuan, B.; Akakuru, O. U.; Zhu, C. J.; Zhang, G. L. et al. Ten-gram-scale facile synthesis of organogadolinium complex nanoparticles for tumor diagnosis. Small 2020, 16, 1906870.

[60]

Lu, Y. D.; Liang, Z. Y.; Feng, J.; Huang, L.; Guo, S.; Yi, P. W.; Xiong, W.; Chen, S. J.; Yang, S.; Xu, Y. K. et al. Facile synthesis of weakly ferromagnetic organogadolinium macrochelates-based T1-weighted magnetic resonance imaging contrast agents. Adv. Sci. 2023, 10, 2205109.

[61]

Shen, Z. Y.; Fan, W. P.; Yang, Z.; Liu, Y. J.; Bregadze, V. I.; Mandal, S. K.; Yung, B. C.; Lin, L. S.; Liu, T.; Tang, W. et al. Exceedingly small gadolinium oxide nanoparticles with remarkable relaxivities for magnetic resonance imaging of tumors. Small 2019, 15, 1903422.

[62]

Shen, Z. Y.; Liu, T.; Yang, Z.; Zhou, Z. J.; Tang, W.; Fan, W. P.; Liu, Y. J.; Mu, J.; Li, L.; Bregadze, V. I. et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020, 235, 119783.

[63]

Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46.

[64]

Abakumov, M. A.; Nukolova, N. V.; Sokolsky-Papkov, M.; Shein, S. A.; Sandalova, T. O.; Vishwasrao, H. M.; Grinenko, N. F.; Gubsky, I. L.; Abakumov, A. M.; Kabanov, A. V. et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnol. Biol. Med. 2015, 11, 825–833.

[65]

Ngen, E. J.; Azad, B. B.; Boinapally, S.; Lisok, A.; Brummet, M.; Jacob, D.; Pomper, M. G.; Banerjee, S. R. MRI assessment of prostate-specific membrane antigen (PSMA) targeting by a PSMA-targeted magnetic nanoparticle: Potential for image-guided therapy. Mol. Pharmaceutics 2019, 16, 2060–2068.

[66]

Fernández-Barahona, I.; Gutiérrez, L.; Veintemillas-Verdaguer, S.; Pellico, J.; del Puerto Morales, M.; Catala, M.; del Pozo, M. A.; Ruiz-Cabello, J.; Herranz, F. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: One-pot synthesis and in vivo targeted molecular imaging. ACS Omega 2019, 4, 2719–2727.

[67]

Wang, X. Y.; Chen, L.; Ge, J. X.; Afshari, M. J.; Yang, L.; Miao, Q. Q.; Duan, R. X.; Cui, J. B.; Liu, C. Y.; Zeng, J. F. et al. Rational constructed ultra-small iron oxide nanoprobes manifesting high performance for T1-weighted magnetic resonance imaging of glioblastoma. Nanomaterials 2021, 11, 2601.

[68]

Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50.

[69]

Kantamneni, H.; Zevon, M.; Donzanti, M. J.; Zhao, X. Y.; Sheng, Y.; Barkund, S. R.; McCabe, L. H.; Banach-Petrosky, W.; Higgins, L. M.; Ganesan, S. et al. Surveillance nanotechnology for multi-organ cancer metastases. Nat. Biomed. Eng. 2017, 1, 993–1003.

[70]

Li, Y.; Zhao, X.; Liu, X. L.; Cheng, K. M.; Han, X. X.; Zhang, Y. L.; Min, H.; Liu, G. N.; Xu, J. C.; Shi, J. et al. A bioinspired nanoprobe with multilevel responsive T1-weighted MR signal-amplification illuminates ultrasmall metastases. Adv. Mater. 2020, 32, 1906799.

[71]

Wu, Q. M.; Pan, W.; Wu, G. F.; Wu, F. S.; Guo, Y. S.; Zhang, X. X. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques. Atherosclerosis 2023, 369, 17–26

[72]

Zhang, J. Y.; Ning, Y. Y.; Zhu, H.; Rotile, N. J.; Wei, H.; Diyabalanage, H.; Hansena, E. C.; Zhou, I. Y.; Barrett, S. C.; Sojoodi, M. et al. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc. Natl. Acad. Sci. USA 2023, 120, e2220036120.

[73]

Srinivasarao, M.; Low, P. S. Ligand-targeted drug delivery. Chem. Rev. 2017, 117, 12133–12164.

[74]

Zhang, H.; Guo, Y. K.; Jiao, J.; Qiu, Y.; Miao, Y. Q.; He, Y.; Li, Z. L.; Xia, C. C.; Li, L.; Cai, J. et al. A hepatocyte-targeting nanoparticle for enhanced hepatobiliary magnetic resonance imaging. Nat. Biomed. Eng. 2023, 7, 221–235.

[75]

Hu, X.; Li, F. Y.; Wang, S. Y.; Xia, F.; Ling, D. S. Biological stimulus-driven assembly/disassembly of functional nanoparticles for targeted delivery, controlled activation, and bioelimination. Adv. Healthcare Mater. 2018, 7, 1800359.

[76]

Zhou, Z. J.; Bai, R. L.; Munasinghe, J.; Shen, Z. Y.; Nie, L. M.; Chen, X. Y. T1–T2 dual-modal magnetic resonance imaging: From molecular basis to contrast agents. ACS Nano 2017, 11, 5227–5232

[77]

Gillis, P.; Moiny, F.; Brooks, R. A. On T2-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 2002, 47, 257–263.

[78]

Wang, L. Y.; Huang, J.; Chen, H. B.; Wu, H.; Xu, Y. L.; Li, Y. C.; Yi, H.; Wang, Y. A.; Yang, L.; Mao, H. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1–T2 switchable magnetic resonance imaging contrast. ACS Nano 2017, 11, 4582–4592.

[79]

Gao, Z. Y.; Hou, Y.; Zeng, J. F.; Chen, L.; Liu, C. Y.; Yang, W. S.; Gao, M. Y. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv. Mater. 2017, 29, 1701095.

[80]

Bai, C.; Jia, Z. Y.; Song, L. N.; Zhang, W.; Chen, Y.; Zang, F. C.; Ma, M.; Gu, N.; Zhang, Y. Time-dependent T1–T2 switchable magnetic resonance imaging realized by c(RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv. Funct. Mater. 2018, 28, 1802281.

[81]

Zhou, H. G.; Guo, M. Y.; Li, J. Y.; Qin, F. L.; Wang, Y. Q.; Liu, T.; Liu, J.; Sabet, Z. F.; Wang, Y. L.; Liu, Y. et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J. Am. Chem. Soc. 2021, 143, 1846–1853.

[82]

Xu, X. D.; Zhou, X. X.; Xiao, B.; Xu, H. X.; Hu, D. D.; Qian, Y.; Hu, H. J.; Zhou, Z. X.; Liu, X. R.; Gao, J. Q. et al. Glutathione-responsive magnetic nanoparticles for highly sensitive diagnosis of liver metastases. Nano Lett. 2021, 21, 2199–2206.

[83]

Zhang, P. S.; Zeng, J. F.; Li, Y. Y.; Yang, C.; Meng, J. L.; Hou, Y.; Gao, M. Y. Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew. Chem., Int. Ed. 2021, 60, 8130–8138.

[84]

Li, X.; Lu, S. Y.; Xiong, Z. G.; Hu, Y.; Ma, D.; Lou, W. Q.; Peng, C.; Shen, M. W.; Shi, X. Y. Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv. Sci. 2019, 6, 1901800.

[85]

Lu, J. X.; Sun, J. H.; Li, F. Y.; Wang, J.; Liu, J. N.; Kim, D.; Fan, C. H.; Hyeon, T.; Ling, D. S. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J. Am. Chem. Soc. 2018, 140, 10071–10074.

[86]

Li, F. Y.; Liang, Z. Y.; Liu, J. N.; Sun, J. H.; Hu, X.; Zhao, M.; Liu, J. X.; Bai, R. L.; Kim, D.; Sun, X. L. et al. Dynamically reversible iron oxide nanoparticle assemblies for targeted amplification of T1-weighted magnetic resonance imaging of tumors. Nano Lett. 2019, 19, 4213–4220.

[87]

Choi, J. S.; Kim, S.; Yoo, D.; Shin, T. H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat. Mater. 2017, 16, 537–542.

[88]

Wang, C.; Sun, W. B.; Zhang, J.; Zhang, J. P.; Guo, Q. H.; Zhou, X. Y.; Fan, D. D.; Liu, H. R.; Qi, M.; Gao, X. H. et al. An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nat. Biomed. Eng. 2021, 5, 278–289.

[89]

Wang, Z. L.; Xue, X. D.; Lu, H. W.; He, Y. X.; Lu, Z. W.; Chen, Z. J.; Yuan, Y.; Tang, N.; Dreyer, C. A.; Quigley, L. et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol. 2020, 15, 482–490.

[90]

Du, H.; Wang, Q. Y.; Liang, Z. Y.; Li, Q. L.; Li, F. Y.; Ling, D. S. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. Nanoscale 2022, 14, 17483–17499.

[91]

Hu, H. L. Recent advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging. Front. Chem. 2020, 8, 203.

[92]

Wang, J.; Jia, Y. H.; Wang, Q. Y.; Liang, Z. Y.; Han, G. X.; Wang, Z. J.; Lee, J.; Zhao, M.; Li, F. Y.; Bai, R. L. et al. An ultrahigh-field-tailored T1–T2 dual-mode MRI contrast agent for high-performance vascular imaging. Adv. Mater. 2021, 33, 2004917.

[93]

Helm, L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med. Chem. 2010, 2, 385–396.

[94]

Shin, T. H.; Kim, P. K.; Kang, S.; Cheong, J.; Kim, S.; Lim, Y.; Shin, W.; Jung, J. Y.; Lah, J. D.; Choi, B. W. et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat. Biomed. Eng. 2021, 5, 252–263.

[95]

Balachandran, Y. L.; Wang, W.; Yang, H. Y.; Tong, H. Y.; Wang, L. L.; Liu, F.; Chen, H. S.; Zhong, K.; Liu, Y.; Jiang, X. Y. Heterogeneous iron oxide/dysprosium oxide nanoparticles target liver for precise magnetic resonance imaging of liver fibrosis. ACS Nano 2022, 16, 5647–5659.

[96]

Laflamme, M. A.; Murry, C. E. Regenerating the heart. Nat. Biotechnol. 2005, 23, 845–856.

[97]

Fox, I. J.; Daley, G. Q.; Goldman, S. A.; Huard, J.; Kamp, T. J.; Trucco, M. Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science 2014, 345, 1247391.

[98]

Wu, M. Y.; Zhang, H. X.; Tie, C. J.; Yan, C. H.; Deng, Z. T.; Wan, Q.; Liu, X.; Yan, F.; Zheng, H. R. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 2018, 9, 4777.

[99]

Liu, X. L.; Chen, S. Z.; Zhang, H.; Zhou, J.; Fan, H. M.; Liang, X. J. Magnetic nanomaterials for advanced regenerative medicine: The promise and challenges. Adv. Mater. 2019, 31, 1804922.

[100]

Sheng, J. Y.; Shi, C.; Gu, N. Clinical trials of MRI-based immune cell imaging: Challenges and perspectives. Sci. Bull. 2021, 66, 303–306.

[101]

Bulte, J. W. M.; Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484–499.

[102]

Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. AJR Am. J. Roentgenol. 2009, 193, 314–325

[103]

Zhu, J. H.; Zhou, L. F.; Xingwu, F. G. Tracking neural stem cells in patients with brain trauma. N. Engl. J. Med. 2006, 355, 2376–2378.

[104]

Thu, M. S.; Bryant, L. H.; Coppola, T.; Jordan, E. K.; Budde, M. D.; Lewis, B. K.; Chaudhry, A.; Ren, J. Q.; Varma, N. R. S.; Arbab, A. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin, and protamine for cell tracking by magnetic resonance imaging. Nat. Med. 2012, 18, 463–467.

[105]

Wang, Q. Y.; Ma, X. B.; Liao, H. W.; Liang, Z. Y.; Li, F. Y.; Tian, J.; Ling, D. S. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020, 14, 2053–2062.

[106]

Yan, S.; Hu, K.; Zhang, M.; Sheng, J. Y.; Xu, X. Q.; Tang, S. J.; Li, Y.; Yang, S.; Si, G. X.; Mao, Y. et al. Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact. Mater. 2023, 19, 418–428.

[107]

Liu, H. R.; Sun, R.; Wang, L.; Chen, X. Y.; Li, G. L.; Cheng, Y.; Zhai, G. H.; Bay, B. H.; Yang, F.; Gu, N. et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: An innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022, 16, 18806–18821.

Nano Research
Pages 12531-12542
Cite this article:
Zhang H, Liu XL, Fan HM. Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents. Nano Research, 2023, 16(11): 12531-12542. https://doi.org/10.1007/s12274-023-6214-9
Topics:

1073

Views

14

Crossref

11

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 31 July 2023
Revised: 11 September 2023
Accepted: 18 September 2023
Published: 04 November 2023
© Tsinghua University Press 2023
Return