Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High entropy alloys (HEA) are frequently employed as catalysts in electrocatalytic hydrogen evolution. However, the traditional high entropy alloy synthesis methods are time-consuming, energy-intensive, and environmentally polluting, which limits their application in the hydrogen evolution reaction (HER). This study leveraged the capabilities of flash Joule heating (FJH) to synthesize carbon-supported high-entropy alloy sulfide nanoparticles (CC-S-HEA) on carbon cloth (CC) with good self-standing properties within 300 ms. The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas, resulting in numerous pore structures and defects on CC, forming an S-doped carbon substrate (CC-S). Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles. The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C. The density functional theory (DFT) calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles. Moreover, the unique electronic structure of CC-S-HEA was beneficial to H* adsorption and promoted catalytic kinetics. The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products, which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.
Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H. et al. Confining zero-valent platinum single atoms in α-MoC1− x for pH-Universal hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2108464.
Zhang, L. L.; Lei, Y. T.; Xu, W. J.; Wang, D.; Zhao, Y. F.; Chen, W. X.; Xiang, X.; Pang, X. C.; Zhang, B.; Shang, H. S. Highly active and durable nitrogen-doped CoP/CeO2 nanowire heterostructures for overall water splitting. Chem. Eng. J. 2023, 460, 141119.
Ou, G.; Fan, P. X.; Ke, X. X.; Xu, Y. S.; Huang, K.; Wei, H. H.; Yu, W.; Zhang, H. J.; Zhong, M. L.; Wu, H. et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 2018, 11, 751–761.
Qie, Y. Q.; Liu, Y. X.; Kong, F. Q.; Yang, Z. L.; Yang, H. High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction. Nano Res. 2022, 15, 3901–3906.
Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.
Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.
Wu, W. Z.; Huang, Y. J.; Wang, X. Q.; Shen, P. K.; Zhu, J. L. Composition-optimized manganese phosphide nanoparticles anchored on porous carbon network for efficiently electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 469, 143879.
Liu, H.; Qin, H. Y.; Kang, J. L.; Ma, L. Y.; Chen, G. X.; Huang, Q.; Zhang, Z. J.; Liu, E. Z.; Lu, H. M.; Li, J. X. et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem. Eng. J. 2022, 435, 134898.
Salah, A.; Ren, H. D.; Al-Ansi, N.; Tan, H. Q.; Yu, F. Y.; Liu, Y. C.; Thamer, B. M.; Al-Salihy, A.; Zhao, L.; Li, Y. G. Dispersing small Ru nanoparticles into boron nitride remodified by reduced graphene oxide for high-efficient electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2023, 644, 378–387.
Xu, L.; Gu, Y.; Li, Y. Y.; Liu, H. Z.; Shang, Y. Y.; Zhu, Y. Y.; Zhou, B.; Zhu, L. H.; Jiang, X. Q. One-step preparation of molybdenum disulfide/graphene nano-catalysts through a simple Co-exfoliation method for high-performance electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 542, 355–362.
Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.
Chen, Z. L.; Qing, H. L.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.
Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.
Nemiwal, M.; Gosu, V.; Zhang, T. C.; Kumar, D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy 2021, 46, 10216–10238.
Shan, A. X.; Teng, X. A.; Zhang, Y.; Zhang, P. F.; Xu, Y. Y.; Liu, C. R.; Li, H.; Ye, H. Y.; Wang, R. M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913.
Ji, J. P.; Zhang, Y. Q.; Tang, L. B.; Liu, C. Y.; Gao, X. H.; Sun, M. H.; Zheng, J. C.; Ling, M.; Liang, C. D.; Lin, Z. Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy 2019, 63, 103849.
Zhou, D.; Jiang, B.; Yang, R.; Hou, X. D.; Zheng, C. B. One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. Chin. Chem. Lett. 2020, 31, 1540–1544.
Gao, D. D.; Liu, R. J.; Biskupek, J.; Kaiser, U.; Song, Y. F.; Streb, C. Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting. Angew. Chem., Int. Ed. 2019, 58, 4644–4648.
Sun, J. S.; Wen, Z.; Han, L. P.; Chen, Z. W.; Lang, X. Y.; Jiang, Q. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis. Adv. Funct. Mater. 2018, 28, 1706127.
Feng, D. Y.; Dong, Y. B.; Nie, P.; Zhang, L.; Qiao, Z. A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction. Chem. Eng. J. 2022, 430, 132883.
Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.
Peng, H. L.; Xie, Y. C. Z.; Xie, Z. C.; Wu, Y. F.; Zhu, W. K.; Liang, S. Q.; Wang, L. B. Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. J. Mater. Chem. A 2020, 8, 18318–18326.
Li, K.; Chen, W. Recent progress in high-entropy alloys for catalysts: Synthesis, applications, and prospects. Mater. Today Energy 2021, 20, 100638.
Chen, Z. Q.; Wen, J. B.; Wang, C. H.; Kang, X. W. Convex cube-shaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 2022, 18, 2204255.
Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.
Ma, P. Y.; Zhao, M. M.; Zhang, L.; Wang, H.; Gu, J. F.; Sun, Y. C.; Ji, W.; Fu, Z. Y. Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition. J. Materiomics 2020, 6, 736–742.
Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.
Al Bacha, S.; Pighin, S. A.; Urretavizcaya, G.; Zakhour, M.; Nakhl, M.; Castro, F. J.; Bobet, J. L. Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. Int. J. Hydrogen Energy 2020, 45, 20883–20893.
Dong, Y.; Duan, S. G.; Huang, X.; Li, C. Q.; Zhang, Z. R. Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures. Mater. Lett. 2021, 294, 129778.
Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.
Ud Din, M. A.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.
Dai, W. J.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111.
Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 2017, 46, 3510–3528.
Wyss, K. M.; Chen, W. Y.; Beckham, J. L.; Savas, P. E.; Tour, J. M. Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 2022, 16, 7804–7815.
Algozeeb, W. A.; Savas, P. E.; Yuan, Z.; Wang, Z.; Kittrell, C.; Hall, J. N.; Chen, W. Y.; Bollini, P.; Tour, J. M. Plastic waste product captures carbon dioxide in nanometer pores. ACS Nano 2022, 16, 7284–7290.
Huang, P. F.; Zhu, R. T.; Zhang, X. X.; Zhang, W. J. Effect of free radicals and electric field on preparation of coal pitch-derived graphene using flash joule heating. Chem. Eng. J. 2022, 450, 137999.
Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.
Liu, C.; Shen, Y.; Zhang, J. F.; Li, G.; Zheng, X. R.; Han, X. P.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505.
Luo, J. W.; Zhang, J. C.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Liu, W. D.; Chen, Y. N.; Hu, W. B. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Res. 2023, 16, 4240–4245.
Zeng, C. H.; Duan, C. P.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Zhang, J. C.; Luo, J. W.; Liu, W. D. et al. Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. 2022, 32, 786–792.
Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.
Zhao, J. H.; Wang, Z. Y.; Fang, X. Y.; Yang, L.; Wu, C. Q.; Gan, W.; Zhou, Y.; Shan, L.; Lin, Y. X. Fast joule heating synthesis of NiCoFeCrMo high-entropy alloy embedded in graphene for water oxidation. J. Alloys Compd. 2023, 966, 171535.
Laidler, K. J. The development of the arrhenius equation. J. Chem. Educ. 1984, 61, 494.
Welch, G. R. Some problems in the usage of gibbs free energy in biochemistry. J. Theor. Biol. 1985, 114, 433–446.
Wei, S.; Wan, C. C.; Li, X. G.; Su, J. H.; Cheng, W. J.; Chai, H. Y.; Wu, Y. Q. Constructing N-doped and 3D hierarchical porous graphene nanofoam by plasma activation for supercapacitor and Zn ion capacitor. iScience 2023, 26, 105964.
Wahab, H.; Jain, V.; Tyrrell, A. S.; Seas, M. A.; Kotthoff, L.; Johnson, P. A. Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in- situ Raman analysis. Carbon 2020, 167, 609–619.
Xu, X.; Du, Y. K.; Wang, C. H.; Guo, Y.; Zou, J. W.; Zhou, K.; Zeng, Z.; Liu, Y. Y.; Li, L. Q. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J. Alloys Compd. 2020, 822, 153642.
Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.
Liu, C.; Zhu, H.; Lu, S. L.; Duan, F.; Du, M. L. High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. New J. Chem. 2021, 45, 22255–22260.
Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Shokri, A.; Zerangnasrabad, S.; Kakavandi, B. New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim. Acta 2022, 436, 141444.
Paulraj, G.; Venkatesh, P. S.; Dharmaraj, P.; Gopalakrishnan, S.; Jeganathan, K. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 1793–1801.
Chandrasekaran, P.; Edison, T. N. J. I.; Sethuraman, M. G. Electrocatalytic performance of carbon dots/palladium nanoparticles composite towards hydrogen evolution reaction in acid medium. Int. J. Hydrogen Energy 2020, 45, 28800–28811.
Tan, Y.; Wei, Y. K.; Liang, K. X.; Wang, L. Y.; Zhang, S. H. Facile in-situ deposition of Pt nanoparticles on nano-pore stainless steel composite electrodes for high active hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 26340–26346.
Lu, Y.; Geng, S. H.; Wang, S. J.; Rao, S. C.; Huang, Y.; Zou, X. L.; Zhang, Y. W.; Xu, Q.; Lu, X. G. Electrodeposition of Ni-Mo-Cu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 5704–5716.
Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B: Environ. 2022, 313, 121472.
Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062
Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 133, 14236–14242.
Zhao, X.; Li, X. Y.; Xiao, D. D.; Gong, M. X.; An, L. L.; Gao, P. F.; Yang, J. L.; Wang, D. L. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl. Catal. B: Environ. 2021, 295, 120280.
Shaker, T.; Mehdipour, H.; Moshfegh, A. Z. Low loaded MoS2/carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 1579–1588.