AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Alloy strategy to synthesize Pt-early transition metal oxide interfacial catalysts

Shi-Long Xu1,2,§Hang Nan1,§Wanqun Zhang1Yue Lin1Sheng-Qi Chu3( )Hai-Wei Liang1( )
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

§ Shi-Long Xu and Hang Nan contributed equally to this work.

Show Author Information

Graphical Abstract

Pt-early transition metal oxide (Pt-MOx) interfacial catalysts synthesized with Pt3M alloy oxidation strategy exhibit improved performance in hydrogenation reactions as a result of the heterolytic dissociation of H2 at richer Pt-metal oxide interfacial sites.

Abstract

Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions. However, the enhancement of performance is often limited by the insufficient metal/metal oxide interface. In this work, we demonstrate a general synthesis of Pt-early transition metal oxide (Pt-MOx, M = Ti, Zr, V, and Y) catalysts with rich interfacial sites, which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts. Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MOx catalysts with abundant interfacial sites. The prepared Pt-TiOx interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde, nitrobenzene, styrene, and furfural, as a result of the heterolytic dissociation of H2 at Pt-metal oxide interfacial sites.

Electronic Supplementary Material

Download File(s)
12274_2023_6218_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

[2]

Qin, R. X.; Deng, G. C.; Zheng, N. F. Assembling effects of surface ligands on metal nanomaterials. Prog. Chem. 2020, 32, 1140–1157.

[3]

Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.

[4]

Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeO x nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

[5]

Park, J. Y.; Baker, L. R.; Somorjai, G. A. Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem. Rev. 2015, 115, 2781–2817.

[6]

Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

[7]

Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522.

[8]

Tang, H. L.; Su, Y.; Guo, Y. L.; Zhang, L. L.; Li, T. B.; Zang, K. T.; Liu, F.; Li, L.; Luo, J.; Qiao, B. T. et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem. Sci. 2018, 9, 6679–6684.

[9]

Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeO x and TiO x nanoparticles grown on Au (111) in the water–gas shift reaction. Science 2007, 318, 1757–1760.

[10]

Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.

[11]

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

[12]

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

[13]

Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

[14]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[15]

Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717.

[16]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[17]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[18]

Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

[19]

Yamada, Y.; Tsung, C. K.; Huang, W. Y.; Huo, Z. Y.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. D. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 2011, 3, 372–376.

[20]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

[21]

Xu, H.; Fu, Q.; Guo, X. G.; Bao, X. H. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation. ChemCatChem 2012, 4, 1645–1652.

[22]

Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 2008, 9, 2475–2479

[23]

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

[24]

Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au-CuO x hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537–2546.

[25]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[26]

Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.

[27]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[28]

Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.

[29]

Xu, S. L.; Shen, S. C.; Zhao, S.; Ding, Y. W.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal-sulfur interaction. Chem. Sci. 2020, 11, 7933–7939.

[30]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[31]

Xiong, Y.; Yang, Y.; Joress, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R. et al. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc. Natl. Acad. Sci. USA 2019, 116, 1974–1983.

[32]

Beard, B. C.; Ross, P. N. Platinum-titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: Implications for strong metal-support interaction. J. Phys. Chem. 1986, 90, 6811–6817.

[33]

Zhang, X. X.; Shi, W.; Li, Y.; Zhao, W. N.; Han, S. B.; Shen, W. J. Pt3Ti intermetallic alloy formed by strong metal-support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone. ACS Catal. 2023, 13, 4030–4041.

[34]

Beck, A.; Frey, H.; Huang, X.; Clark, A. H.; Goodman, E. D.; Cargnello, M.; Willinger, M.; van Bokhoven, J. A. Controlling the strong metal-support interaction overlayer structure in Pt/TiO2 catalysts prevents particle evaporation. Angew. Chem., Int. Ed. 2023, 62, e202301468.

[35]

Mayrhofer, K. J. J.; Juhart, V.; Hartl, K.; Hanzlik, M.; Arenz, M. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem., Int. Ed. 2009, 48, 3529–3531.

[36]

He, W. X.; Zhang, X.; Zheng, K.; Wu, C. Q.; Pan, Y.; Li, H. M.; Xu, L. X.; Xu, R. C.; Chen, W.; Liu, Y. et al. Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic CO oxidation. Angew. Chem., Int. Ed. 2023, 62, e202213365.

[37]

Mu, R. T.; Fu, Q.; Liu, H. Y.; Tan, D. L.; Zhai, R. S.; Bao, X. H. Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Appl. Surf. Sci. 2009, 255, 7296–7301.

[38]

Su, H. Y.; Gu, X. K.; Ma, X.; Zhao, Y. H.; Bao, X. H.; Li, W. X. Structure evolution of Pt-3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: A first-principles study. Catal. Today 2011, 165, 89–95.

[39]

Wu, Z. W.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N. et al. Changes in catalytic and adsorptive properties of 2 nm Pt3Mn nanoparticles by subsurface atoms. J. Am. Chem. Soc. 2018, 140, 14870–14877.

[40]

Cai, W. T.; Mu, R. T.; Zha, S.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Li, H.; Tian, H.; Tang, Y.; Tao, F. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.

[41]

Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502.

[42]

Mäkelä, E.; Lahti, R.; Jaatinen, S.; Romar, H.; Hu, T.; Puurunen, R. L.; Lassi, U.; Karinen, R. Study of Ni, Pt, and Ru catalysts on wood-based activated carbon supports and their activity in furfural conversion to 2-methylfuran. ChemCatChem 2018, 10, 3269–3283.

[43]

Wang, C. T.; Liu, Z. Q.; Wang, L.; Dong, X.; Zhang, J.; Wang, G. X.; Han, S. C.; Meng, X. J.; Zheng, A. M.; Xiao, F. S. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 2018, 8, 474–481.

Nano Research
Pages 3390-3397
Cite this article:
Xu S-L, Nan H, Zhang W, et al. Alloy strategy to synthesize Pt-early transition metal oxide interfacial catalysts. Nano Research, 2024, 17(4): 3390-3397. https://doi.org/10.1007/s12274-023-6218-5
Topics:

686

Views

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 August 2023
Revised: 18 September 2023
Accepted: 18 September 2023
Published: 08 November 2023
© Tsinghua University Press 2023
Return