Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions. However, the enhancement of performance is often limited by the insufficient metal/metal oxide interface. In this work, we demonstrate a general synthesis of Pt-early transition metal oxide (Pt-MOx, M = Ti, Zr, V, and Y) catalysts with rich interfacial sites, which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts. Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MOx catalysts with abundant interfacial sites. The prepared Pt-TiOx interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde, nitrobenzene, styrene, and furfural, as a result of the heterolytic dissociation of H2 at Pt-metal oxide interfacial sites.
Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.
Qin, R. X.; Deng, G. C.; Zheng, N. F. Assembling effects of surface ligands on metal nanomaterials. Prog. Chem. 2020, 32, 1140–1157.
Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.
Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeO x nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.
Park, J. Y.; Baker, L. R.; Somorjai, G. A. Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem. Rev. 2015, 115, 2781–2817.
Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.
Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522.
Tang, H. L.; Su, Y.; Guo, Y. L.; Zhang, L. L.; Li, T. B.; Zang, K. T.; Liu, F.; Li, L.; Luo, J.; Qiao, B. T. et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem. Sci. 2018, 9, 6679–6684.
Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeO x and TiO x nanoparticles grown on Au (111) in the water–gas shift reaction. Science 2007, 318, 1757–1760.
Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.
Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.
Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.
Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.
Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717.
Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.
Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.
Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.
Yamada, Y.; Tsung, C. K.; Huang, W. Y.; Huo, Z. Y.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. D. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 2011, 3, 372–376.
Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.
Xu, H.; Fu, Q.; Guo, X. G.; Bao, X. H. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation. ChemCatChem 2012, 4, 1645–1652.
Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 2008, 9, 2475–2479
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.
Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au-CuO x hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537–2546.
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.
Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.
Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.
Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.
Xu, S. L.; Shen, S. C.; Zhao, S.; Ding, Y. W.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. Synthesis of carbon-supported sub-2 nanometer bimetallic catalysts by strong metal-sulfur interaction. Chem. Sci. 2020, 11, 7933–7939.
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.
Xiong, Y.; Yang, Y.; Joress, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R. et al. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc. Natl. Acad. Sci. USA 2019, 116, 1974–1983.
Beard, B. C.; Ross, P. N. Platinum-titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: Implications for strong metal-support interaction. J. Phys. Chem. 1986, 90, 6811–6817.
Zhang, X. X.; Shi, W.; Li, Y.; Zhao, W. N.; Han, S. B.; Shen, W. J. Pt3Ti intermetallic alloy formed by strong metal-support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone. ACS Catal. 2023, 13, 4030–4041.
Beck, A.; Frey, H.; Huang, X.; Clark, A. H.; Goodman, E. D.; Cargnello, M.; Willinger, M.; van Bokhoven, J. A. Controlling the strong metal-support interaction overlayer structure in Pt/TiO2 catalysts prevents particle evaporation. Angew. Chem., Int. Ed. 2023, 62, e202301468.
Mayrhofer, K. J. J.; Juhart, V.; Hartl, K.; Hanzlik, M.; Arenz, M. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem., Int. Ed. 2009, 48, 3529–3531.
He, W. X.; Zhang, X.; Zheng, K.; Wu, C. Q.; Pan, Y.; Li, H. M.; Xu, L. X.; Xu, R. C.; Chen, W.; Liu, Y. et al. Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic CO oxidation. Angew. Chem., Int. Ed. 2023, 62, e202213365.
Mu, R. T.; Fu, Q.; Liu, H. Y.; Tan, D. L.; Zhai, R. S.; Bao, X. H. Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Appl. Surf. Sci. 2009, 255, 7296–7301.
Su, H. Y.; Gu, X. K.; Ma, X.; Zhao, Y. H.; Bao, X. H.; Li, W. X. Structure evolution of Pt-3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: A first-principles study. Catal. Today 2011, 165, 89–95.
Wu, Z. W.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N. et al. Changes in catalytic and adsorptive properties of 2 nm Pt3Mn nanoparticles by subsurface atoms. J. Am. Chem. Soc. 2018, 140, 14870–14877.
Cai, W. T.; Mu, R. T.; Zha, S.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Li, H.; Tian, H.; Tang, Y.; Tao, F. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502.
Mäkelä, E.; Lahti, R.; Jaatinen, S.; Romar, H.; Hu, T.; Puurunen, R. L.; Lassi, U.; Karinen, R. Study of Ni, Pt, and Ru catalysts on wood-based activated carbon supports and their activity in furfural conversion to 2-methylfuran. ChemCatChem 2018, 10, 3269–3283.
Wang, C. T.; Liu, Z. Q.; Wang, L.; Dong, X.; Zhang, J.; Wang, G. X.; Han, S. C.; Meng, X. J.; Zheng, A. M.; Xiao, F. S. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 2018, 8, 474–481.