AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications

Zhijian LiangDi ShenLei Wang( )Honggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

In this paper, we present a comprehensive summary of the strategies utilized to modulate the d-band center and spin state in cobalt-based catalysts. We delve into the intricate process of surface reconstruction in these catalysts, providing a detailed analysis. Furthermore, we offer insightful guidance for the effective application of cobalt-based catalysts in water splitting.

Abstract

Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures, so it is necessary to develop non-precious metal catalysts to replace precious metals. Cobalt-based catalysts present effective alternatives due to the diverse valence states, adjustable electronic structures, and plentiful components. In this review, the catalytic mechanisms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for electrocatalytic water splitting are described. Then, the synthesis strategies of various cobalt-based catalysts are systematically summarized, followed by the relationships between the structure and performance clarified. Subsequently, the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed. Furthermore, the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations. Finally, we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.

References

[1]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Tian, C. G.; Wu, A. P.; Wang, Y.; Fu, H. G. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat. Commun. 2022, 13, 3125.

[2]

Lu, X. H.; Xie, S. L.; Yang, H.; Tong, Y. X.; Ji, H. B. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem. Soc. Rev. 2014, 43, 7581–7593.

[3]

Ling, Y. Y.; Wang, H. S.; Liu, M. K.; Wang, B.; Li, S.; Zhu, X. C.; Shi, Y. X.; Xia, H. D.; Guo, K.; Hao, Y. et al. Sequential separation-driven solar methane reforming for H2 derivation under mild conditions. Energy Environ. Sci. 2022, 15, 1861–1871.

[4]

Quan, L.; Li, S. H.; Zhao, Z. P.; Liu, J. Q.; Ran, Y.; Cui, J. Y.; Lin, W.; Yu, X. L.; Wang, L.; Zhang, Y. H. et al. Hierarchically assembling CoFe Prussian blue analogue nanocubes on CoP nanosheets as highly efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.

[5]

Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

[6]

Zhai, Y. Y.; Ren, X. R.; Wang, B. L.; Liu, S. Z. High-entropy catalyst—A novel platform for electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2207536.

[7]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[8]

Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

[9]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2021, 5, 66–73.

[10]

Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

[11]

Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1702513.

[12]

Zhou, X.; Mo, Y. X.; Yu, F.; Liao, L. L.; Yong, X. R.; Zhang, F. M.; Li, D. Y.; Zhou, Q.; Sheng, T.; Zhou, H. Q. Engineering active iron sites on nanoporous bimetal phosphide/nitride heterostructure array enabling robust overall water splitting. Adv. Funct. Mater. 2023, 33, 2209465.

[13]

Majumdar, A.; Dutta, P.; Sikdar, A.; Lee, H.; Ghosh, D.; Jha, S. N.; Tripathi, S.; Oh, Y.; Maiti, U. N. Impact of atomic rearrangement and single atom stabilization on MoSe2@NiCo2Se4 heterostructure catalyst for efficient overall water splitting. Small 2022, 18, 2200622.

[14]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[15]

Kim, N. I.; Sa, Y. J.; Yoo, T. S.; Choi, S. R.; Afzal, R. A.; Choi, T.; Seo, Y. S.; Lee, K. S.; Hwang, J. Y.; Choi, W. S. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 2018, 4, eaap9360.

[16]

Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

[17]

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

[18]

Yang, Z. K; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043

[19]

Li, J.; Gao, X.; Li, Z. Z.; Wang, J. H.; Zhu, L.; Yin, C.; Wang, Y.; Li, X. B.; Liu, Z. F.; Zhang, J. et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 2019, 29, 1808079.

[20]

Zaman, W. Q.; Sun, W.; Tariq, M.; Zhou, Z. H.; Farooq, U.; Abbas, Z.; Cao, L. M.; Yang, J. Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl. Catal. B Environ. 2019, 244, 295–302.

[21]

Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

[22]

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

[23]

Li, Z. J.; Wang, Z. Y.; Xi, S. B.; Zhao, X. X.; Sun, T.; Li, J.; Yu, W.; Xu, H. M.; Herng, T. S.; Hai, X. et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 2021, 15, 7105–7113.

[24]

Yan, X. Y.; Biemolt, J.; Zhao, K.; Zhao, Y.; Cao, X. J.; Yang, Y.; Wu, X. Y.; Rothenberg, G.; Yan, N. A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nat. Commun. 2021, 12, 4143.

[25]

Zhou, J. Q.; Yu, L.; Zhou, Q. C.; Huang, C. Q.; Zhang, Y. L.; Yu, B.; Yu, Y. Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B Environ. 2021, 288, 120002.

[26]

Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

[27]

Song, Y. Y.; Cheng, J. L.; Liu, J.; Ye, Q.; Gao, X.; Lu, J. J.; Cheng, Y. L. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Appl. Catal. B Environ. 2021, 298, 120488.

[28]

Zhu, T.; Liu, S. H.; Huang, B.; Shao, Q.; Wang, M.; Li, F.; Tan, X. Y.; Pi, Y. C.; Weng, S. C.; Huang, B. L. et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy Environ. Sci. 2021, 14, 3194–3202.

[29]

Xie, X. H.; Song, M.; Wang, L. G.; Engelhard, M. H.; Luo, L. L.; Miller, A.; Zhang, Y. Y.; Du, L.; Pan, H. L.; Nie, Z. M. et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy. ACS Catal. 2019, 9, 8712–8718.

[30]

Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

[31]

Sun, F.; Tang, Q.; Jiang, D. E. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022, 12, 8404–8433.

[32]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[33]

Zhang, Q.; Jiang, Z.; Tackett, B. M.; Denny, S. R.; Tian, B. Y.; Chen, X.; Wang, B.; Chen, J. G. Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte. ACS Catal. 2019, 9, 2415–2422.

[34]

Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

[35]
Gong, T. Y.; Liu, Y.; Cui, K.; Xu, J. L.; Hou, L. R.; Xu, H. W.; Liu, R. C.; Deng, J. L.; Yuan, C. Z. Binary molten salt in situ synthesis of sandwich-structure hybrids of hollow β-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction. Carbon Energy, in press, https://doi.org/10.1002/cey2.349.
[36]

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

[37]

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

[38]

Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.

[39]

Chen, M.; Hu, L. H.; Xu, L.; Wei, J. L.; Wu, P.; Guan, G. Q.; Wang, T. J.; Ma, Y. F. Synergistically tuning surface states of hierarchical MoC by Pt–N dual-doping engineering for optimizing hydrogen evolution activity. Small Methods 2023, 7, 2300308.

[40]

Guo, H.; Wu, A. P.; Xie, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.

[41]

Zhang, B. Y.; Chen, L. L.; Zhang, Z. N.; Li, Q.; Khangale, P.; Hildebrandt, D.; Liu, X. Y.; Feng, Q. L.; Qiao, S. L. Modulating the band structure of metal coordinated Salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. (Weinh.) 2022, 9, 2105912.

[42]

Wexler, R. B.; Martirez, J. M. P.; Rappe, A. M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 2018, 140, 4678–4683.

[43]

Kong, F. Y.; Wu, A. P.; Wang, S. Y.; Zhang, X. H.; Tian, C. G.; Fu, H. G. The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 10857–10866.

[44]

Han, D.; Du, G. H.; Wang, Y. T.; Jia, L. N.; Zhao, W. Q.; Su, Q. M.; Ding, S. K.; Zhang, M.; Xu, B. S. Chemical energy-driven lithiation preparation of defect-rich transition metal nanostructures for electrocatalytic hydrogen evolution. Small 2022, 18, 2202779.

[45]

Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

[46]

Alsabban, M. M.; Eswaran, M. K.; Peramaiah, K.; Wahyudi, W.; Yang, X. L.; Ramalingam, V.; Hedhili, M. N.; Miao, X. H.; Schwingenschlögl, U.; Li, L. J. et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium. ACS Nano 2022, 16, 3906–3916.

[47]

Xu, K.; Ding, H.; Zhang, M. X.; Chen, M.; Hao, Z. K.; Zhang, L. D.; Wu, C. Z.; Xie, Y. Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 2017, 29, 1606980.

[48]

Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

[49]

Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900–911.

[50]

Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17231.

[51]

Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co–CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

[52]

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

[53]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[54]

Zhao, T. W.; Shen, X. J.; Wang, Y.; Hocking, R. K.; Li, Y. B.; Rong, C. L.; Dastafkan, K.; Su, Z.; Zhao, C. In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 2021, 31, 2100614.

[55]

Chen, Z. J.; Zheng, R. J.; Graś, M.; Wei, W.; Lota, G.; Chen, H.; Ni, B. J. Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B Environ. 2021, 288, 120037.

[56]

Wang, C. H.; Wang, Y.; Yang, H. C.; Zhang, Y. J.; Zhao, H. J.; Wang, Q. B. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example. Small 2018, 14, 1802895.

[57]

Kim, U.; Lee, S.; Koo, D.; Choi, Y.; Kim, H.; Son, E.; Baik, J. M.; Han, Y. K.; Park, H. Crystal facet and electronic structure modulation of perovskite oxides for water oxidation. ACS Energy Lett. 2023, 8, 1575–1583.

[58]

Wang, X. P.; Xi, S. B.; Huang, P. R.; Du, Y. H.; Zhong, H. Y.; Wang, Q.; Borgna, A.; Zhang, Y. W.; Wang, Z. B.; Wang, H. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702–708.

[59]

Liang, Q. H.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001.

[60]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[61]

Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem., Int. Ed. 2019, 58, 14764–14769.

[62]

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522

[63]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[64]

Zhang, X. H.; Chen, Q. F.; Deng, J. T.; Xu, X. Y.; Zhan, J. R.; Du, H. Y.; Yu, Z. Y.; Li, M. X.; Zhang, M. T.; Shao, Y. H. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 2022, 144, 17748–17752.

[65]

Su, H.; Zhou, W. L.; Zhou, W.; Li, Y. L.; Zheng, L. R.; Zhang, H.; Liu, M. H.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118

[66]

Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.

[67]

Zhao, X.; Zheng, X. R.; Lu, Q.; Li, Y.; Xiao, F. P.; Tang, B.; Wang, S. X.; Yu, D. W.; Rogach, A. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat. 2023, 5, e12293

[68]

Zhang, R.; Wei, Z. H.; Ye, G. Y.; Chen, G. J.; Miao, J. J.; Zhou, X. H.; Zhu, X. W.; Cao, X. Q.; Sun, X. N. “d-Electron complementation” induced V–Co phosphide for efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2101758

[69]

Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

[70]
Hibbert, D. B.; Churchill, C. R. Kinetics of the electrochemical evolution of isotopically enriched gases. Part 2.—18O16O evolution on NiCo2O4 and Li xCo3− xO4 in alkaline solution. J. Chem. Soc. Faraday Trans. 1, 1984 , 80, 1965–1975.
[71]

Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core–shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.

[72]

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

[73]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[74]

Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

[75]

Liu, M.; Ji, Y. J.; Li, Y. Y.; An, P. F.; Zhang, J.; Yan, J. Q.; Liu, S. Z. Single-atom doping and high-valence state for synergistic enhancement of NiO electrocatalytic water oxidation. Small 2021, 17, 2102448.

[76]

Wang, Y.; Yang, R.; Ding, Y. J.; Zhang, B.; Li, H.; Bai, B.; Li, M. R.; Cui, Y.; Xiao, J. P.; Wu, Z. S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.

[77]

Yoo, J. S.; Rong, X.; Liu, Y. S.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018, 8, 4628–4636.

[78]

Guo, H. Q.; Yang, Y. L.; Yang, G. M.; Cao, X. J.; Yan, N.; Li, Z. S.; Chen, E.; Tang, L. N.; Peng, M. L.; Shi, L. et al. Ex situ reconstruction-shaped Ir/CoO/perovskite heterojunction for boosted water oxidation reaction. ACS Catal. 2023, 13, 5007–5019

[79]

Xiao, K.; Wang, Y. F.; Wu, P. Y.; Hou, L. P.; Liu, Z. Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301408.

[80]

Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; Luna, P. D. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

[81]

Li, X. N.; Cheng, Z. X.; Wang, X. L. Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energ. Rev. 2021, 4, 136–145.

[82]

Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

[83]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Li, P.; Sun, B.; Gao, X. C.; Yan, K.; Liu, H.; Duan, Y.; Gao, M. R. et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 2020, 71, 104652.

[84]

Li, J. M.; Li, J.; Ren, J.; Hong, H.; Liu, D. X.; Liu, L. Z.; Wang, D. H. Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 2022, 14, 148.

[85]

Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166

[86]

Hung, S. F.; Zhu, Y. P.; Tzeng, G. Q.; Chen, H. C.; Hsu, C. S.; Liao, Y. F.; Ishii, H.; Hiraoka, N.; Chen, H. M. In situ spatially coherent identification of phosphide-based catalysts: Crystallographic latching for highly efficient overall water electrolysis. ACS Energy Lett. 2019, 4, 2813–2820

[87]

Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Zhang, J. J.; Zhu, J.; Bu, X. H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Res. 2021, 14, 4680–4688.

[88]

Tran-Phu, T.; Daiyan, R.; Leverett, J.; Fusco, Z.; Tadich, A.; Di Bernardo, I.; Kiy, A.; Truong, T. N.; Zhang, Q. R.; Chen, H. J. et al. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chem. Eng. J. 2022, 429, 132180.

[89]

Zhou, J.; Zhang, L. J.; Huang, Y. C.; Dong, C. L.; Lin, H. J.; Chen, C. T.; Tjeng, L. H.; Hu, Z. W. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 2020, 11, 1984.

[90]

Jin, Q. Y.; Ren, B. W.; Li, D. Q.; Cui, H.; Wang, C. X. In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy 2018, 49, 14–22

[91]

Jiang, L. W.; Huang, Y.; Zou, Y.; Meng, C.; Xiao, Y.; Liu, H.; Wang, J. J. Boosting the stability of oxygen vacancies in α-Co(OH)2 nanosheets with coordination polyhedrons as rivets for high-performance alkaline hydrogen evolution electrocatalyst. Adv. Energy Mater. 2022, 12, 2202351.

[92]

Haase, F. T.; Bergmann, A.; Jones, T. E.; Timoshenko, J.; Herzog, A.; Jeon, H. S.; Rettenmaier, C.; Cuenya, B. R. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 2022, 7, 765–773.

[93]

Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (Oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

[94]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[95]

Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

[96]

Wang, S. H.; Jiang, Q.; Ju, S. H.; Hsu, C. S.; Chen, H. M.; Zhang, D.; Song, F. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction. Nat. Commun. 2022, 13, 6650.

[97]

Zhou, J.; Wang, Y.; Su, X. Z.; Gu, S. Q.; Liu, R. D.; Huang, Y. B.; Yan, S.; Li, J.; Zhang, S. Electrochemically accessing ultrathin Co(oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 2019, 12, 739–746.

[98]

Rajan, A. G.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β-NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612.

[99]

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to Be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

[100]

Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.

[101]

Guo, D. Y.; Wan, Z. X.; Li, Y.; Xi, B.; Wang, C. X. TiN@Co5.47N composite material constructed by atomic layer deposition as reliable electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2008511.

[102]

Chen, Z. L.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H. Y.; Xu, H. B.; Li, Y. J.; Wu, R. B. In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 7134–7144.

[103]

Shu, X. X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. T. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234–243.

[104]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

[105]

Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

[106]

Zhang, W.; Han, N.; Luo, J. S.; Han, X.; Feng, S. H.; Guo, W.; Xie, S. J.; Zhou, Z. Y.; Subramanian, P.; Wan, K. et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 2022, 18, 2103561.

[107]

Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C. C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Retracted: Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 2018, 30, 1705796.

[108]
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008 , 321, 1072–1075.
[109]

Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253.

[110]

Qi, J.; Lin, Y. P.; Chen, D. D.; Zhou, T. H.; Zhang, W.; Cao, R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2020, 59, 8917–8921.

[111]

Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.

[112]

Huang, S. C.; Meng, Y. Y.; He, S. M.; Goswami, A.; Wu, Q. L.; Li, J. H.; Tong, S. F.; Asefa, T.; Wu, M. M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1606585.

[113]

Wang, Q.; Xu, H.; Qian, X. Y.; He, G. Y.; Chen, H. Q. Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B Environ. 2023, 322, 122104.

[114]

Wu, F.; Yang, R.; Lu, S. S.; Du, W.; Zhang, B.; Shi, Y. M. Unveiling partial transformation and activity origin of sulfur vacancies for hydrogen evolution. ACS Energy Lett. 2022, 7, 4198–4203.

[115]

Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. A.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

[116]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[117]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[118]

Chen, P. Z.; Xu, K.; Tao, S.; Zhou, T. P.; Tong, Y.; Ding, H.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; Xie, Y. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium. Adv. Mater. 2016, 28, 7527–7532.

[119]

Liang, L.; Cheng, H.; Lei, F. C.; Han, J.; Gao, S.; Wang, C. M.; Sun, Y. F.; Qamar, S.; Wei, S. Q.; Xie, Y. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: Robust water-electrolysis catalysts. Angew. Chem., Int. Ed. 2015, 54, 12004–12008.

[120]

Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

[121]

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

[122]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[123]

Hossain, M. D.; Liu, Z. J.; Zhuang, M. H.; Yan, X. X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.

[124]

Liu, X. H.; Deng, Y. C.; Zheng, L. R.; Kesama, M. R.; Tang, C.; Zhu, Y. F. Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 2022, 12, 5517–5526.

[125]

Liu, R.; Gong, Z. C.; Liu, J. B.; Dong, J. C.; Liao, J. W.; Liu, H.; Huang, H. K.; Liu, J. J.; Yan, M. M.; Huang, K. et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 2021, 33, 2103533.

[126]

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

[127]

Sun, X. P.; Sun, S. X.; Gu, S. Q.; Liang, Z. F.; Zhang, J. X.; Yang, Y. Q.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y. et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 2019, 61, 245–250.

[128]

Yan, L.; Zhang, B.; Zhu, J. L.; Zhao, S. Z.; Li, Y. Y.; Zhang, B.; Jiang, J. J.; Ji, X.; Zhang, H. Y.; Shen, P. K. Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J. Mater. Chem. A 2019, 7, 14271–14279.

[129]

Li, X. J.; Zhang, H. K.; Li, X.; Hu, Q.; Deng, C.; Jiang, X. X.; Yang, H. P.; He, C. X. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Res. 2023, 16, 2245–2251.

[130]

Jin, H. H.; Yu, R. H.; Hu, C. X.; Ji, P. X.; Ma, Q. L.; Liu, B. S.; He, D. P.; Mu, S. C. Size-controlled engineering of cobalt metal catalysts through a coordination effect for oxygen electrocatalysis. Appl. Catal. B Environ. 2022, 317, 121766.

[131]

Liu, H. L.; Li, Z. H.; Hu, J.; Qiu, Z. L.; Liu, W.; Lu, J. G.; Yin, J. G. Self-supported cobalt oxide electrocatalysts with hierarchical chestnut burr-like nanostructure for efficient overall water splitting. Chem. Eng. J. 2022, 435, 134995.

[132]

Zhang, X.; Yu, P.; Xing, G. Y.; Xie, Y.; Zhang, X. X.; Zhang, G. Y.; Sun, F. F.; Wang, L. Iron single atoms-assisted cobalt nitride nanoparticles to strengthen the cycle life of rechargeable Zn-air battery. Small 2022, 18, 2205228.

[133]

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

[134]

Wu, H.; Jiang, H.; Yang, Y. Q.; Hou, C. Y.; Zhao, H. T.; Xiao, R.; Wang, H. Z. Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 14498–14505.

[135]

Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

[136]

Tong, Y. L.; Xu, J. Y.; Jiang, H.; Gao, F.; Lu, Q. Y. Thickness-control of ultrathin two-dimensional cobalt hydroxide nanosheets with enhanced oxygen evolution reaction performance. Chem. Eng. J. 2017, 316, 225–231.

[137]

Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 2016, 138, 4006–4009.

[138]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[139]

Huang, J. B.; Hao, M. Y.; Mao, B. G.; Zheng, L. R.; Zhu, J.; Cao, M. H. The underlying molecular mechanism of fence engineering to break the activity-stability trade-off in catalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114899.

[140]

Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X. X.; Zheng, X. S. et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338.

[141]

Du, P. W.; Kokhan, O.; Chapman, K. W.; Chupas, P. J.; Tiede, D. M. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. J. Am. Chem. Soc. 2012, 134, 11096–11099.

[142]

Babar, P.; Lokhande, A.; Shin, H. H.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J. H. Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 2018, 14, 1702568.

[143]

Wen, J. F.; Xu, B. G.; Zhou, J. Y. Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 2019, 11, 89.

[144]

Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C. G.; Fu, H. G. N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn-air batteries. Sci. China Mater. 2019, 62, 624–632.

[145]

Liu, Q.; Liu, X.; Xie, Y.; Sun, F. F.; Liang, Z. J.; Wang, L.; Fu, H. G. N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery. J. Mater. Chem. A 2020, 8, 21189–21198.

[146]

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

[147]

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. D. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

[148]

Marje, S. J.; Patil, V. V.; Parale, V. G.; Park, H. H.; Shinde, P. A.; Gunjakar, J. L.; Lokhande, C. D.; Patil, U. M. Microsheets like nickel cobalt phosphate thin films as cathode for hybrid asymmetric solid-state supercapacitor: Influence of nickel and cobalt ratio variation. Chem. Eng. J. 2022, 429, 132184.

[149]

Song, Z. X.; Wang, K. X.; Sun, Q.; Zhang, L.; Li, J. J.; Li, D. J.; Sze, P. W.; Liang, Y.; Sun, X. L.; Fu, X. Z. et al. High-performance ammonium cobalt phosphate nanosheet electrocatalyst for alkaline saline water oxidation. Adv. Sci. (Weinh.) 2021, 8, 2100498.

[150]

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

[151]

Tang, Y.; Shen, K. Y.; Zheng, J.; He, B. H.; Chen, J. L.; Lu, J. H.; Ge, W.; Shen, L. X.; Yang, P. Z.; Deng, S. K. d-Band center modulating of CoO x /Co9S8 by oxygen vacancies for fast-kinetics pathway of water oxidation. Chem. Eng. J. 2022, 427, 130915.

[152]
Yuan, C. Z.; Wang, S.; Hui, K. S.; Wang, K. X.; Li, J. F.; Gao, H. X.; Zha, C. Y.; Zhang, X. M.; Dinh, D. A.; Wu, X. L. et al. In situ immobilizing atomically dispersed Ru on oxygen-defective Co3O4 for efficient oxygen evolution. ACS Catal. 2023 , 13, 2462–2471.
[153]

Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.

[154]

Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

[155]

Gu, Y. H.; Wang, X. Y.; Bao, A.; Dong, L.; Zhang, X. Y.; Pan, H. J.; Cui, W. Q.; Qi, X. W. Enhancing electrical conductivity of single-atom doped Co3O4 nanosheet arrays at grain boundary by phosphor doping strategy for efficient water splitting. Nano Res. 2022, 15, 9511–9519.

[156]

Wang, Z. P.; Lin, Z. P.; Deng, J.; Shen, S. J.; Meng, F. Q.; Zhang, J. T.; Zhang, Q. H.; Zhong, W. W.; Gu, L. Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated topochemical deintercalation. Adv. Energy Mater. 2021, 11, 2003023.

[157]

Xie, W. W.; Huang, J. H.; Huang, L. T.; Geng, S. P.; Song, S. Q.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B Environ. 2022, 303, 120871.

[158]

Gong, R.; Liu, B. W.; Wang, X. L.; Du, S. C.; Xie, Y.; Jia, W. Q.; Bian, X. X.; Chen, Z. M.; Ren, Z. Y. Electronic structure modulation induced by cobalt-doping and lattice-contracting on armor-like ruthenium oxide drives pH-universal oxygen evolution. Small 2023, 19, 2204889.

[159]

Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

[160]

Zhang, G. R.; Li, X. J.; Li, N.; Wu, T. T.; Wang, L. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution. Nano Res. 2023, 16, 6568–6576.

[161]

Chen, W. X.; Hu, Y. J.; Peng, P.; Cui, J. H.; Wang, J. M.; Wei, W.; Zhang, Y. Y.; Ostrikov, K. K.; Zang, S. Q. Multidimensional Ni-Co-sulfide heterojunction electrocatalyst for highly efficient overall water splitting. Sci. China Mater. 2022, 65, 2421–2432.

[162]

Wang, Y. L.; Du, Y. M.; Fu, Z. Q.; Ren, J. H.; Fu, Y. L.; Wang, L. Construction of Ru/FeCoP heterointerface to drive dual active site mechanism for efficient overall water splitting. J. Mater. Chem. A 2022, 10, 16071–16079.

[163]

Zhang, X. H.; Wu, A. P.; Wang, D. X.; Jiao, Y. Q.; Yan, H. J.; Jin, C. X.; Xie, Y.; Tian, C. G. Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting. Appl. Catal. B Environ. 2023, 328, 122474.

[164]

Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.

[165]

Li, D.; Qin, Y. Y.; Liu, J.; Zhao, H. Y.; Sun, Z. J.; Chen, G. B.; Wu, D. Y.; Su, Y. Q.; Ding, S. J.; Xiao, C. H. Dense crystalline–amorphous interfacial sites for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2022, 32, 2107056.

[166]

Ren, J. H.; Du, Y. M.; Wang, Y. L.; Zhao, S. G.; Yang, B.; Li, B.; Wang, L. Modulating amorphous/crystalline heterogeneous interface in RuCoMo y O x grown on nickel foam to achieve efficient overall water splitting. Chem. Eng. J. 2023, 469, 143993.

[167]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline–amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[168]

Liu, Y. D.; Sakthivel, T.; Hu, F.; Tian, Y. H.; Wu, D. S.; Ang, E. H.; Liu, H.; Guo, S. W.; Peng, S. J.; Dai, Z. F. Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy Mater. 2023, 13, 2203797.

[169]

Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

[170]

Zhou, Y.; Zhang, J. T.; Ren, H.; Pan, Y.; Yan, Y. G.; Sun, F. C.; Wang, X. Y.; Wang, S. T.; Zhang, J. Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118467.

[171]

Wang, Y.; Jiao, Y. Q.; Yan, H. J.; Yang, G. C.; Tian, C. G.; Wu, A. P.; Liu, Y.; Fu, H. G. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202116233.

[172]

Yang, F.; Xiong, T. Z.; Huang, P.; Zhou, S. H.; Tan, Q. R.; Yang, H.; Huang, Y. C.; Balogun, M. S. Nanostructured transition metal compounds coated 3D porous core–shell carbon fiber as monolith water splitting electrocatalysts: A general strategy. Chem. Eng. J. 2021, 423, 130279.

[173]

Chen, R. R.; Sun, Y. M.; Ong, S. J. H.; Xi, S. B.; Du, Y. H.; Liu, C. T.; Lev, O.; Xu, Z. J. Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation. Adv. Mater. 2020, 32, 1907976.

[174]

Sun, Y. M.; Ren, X.; Sun, S. N.; Liu, Z.; Xi, S. B.; Xu, Z. J. Engineering high-spin state cobalt cations in spinel zinc cobalt oxide for spin channel propagation and active site enhancement in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 14536–14544.

[175]

Li, F. F.; Ai, H. Q.; Liu, D.; Lo, K. H.; Pan, H. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: An insightful view from spin state transition. J. Mater. Chem. A 2021, 9, 17749–17759.

[176]

Hsu, S. H.; Hung, S. F.; Wang, H. Y.; Xiao, F. X.; Zhang, L. P.; Yang, H. B.; Chen, H. M.; Lee, J. M.; Liu, B. Tuning the electronic spin state of catalysts by strain control for highly efficient water electrolysis. Small Methods 2018, 2, 1800001.

[177]

Tong, Y.; Guo, Y. Q.; Chen, P. Z.; Liu, H. F.; Zhang, M. X.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 2017, 3, 812–821.

[178]

Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; Xian, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

[179]

Chen, R. R.; Chen, G.; Ren, X.; Ge, J. J.; Ong, S. J. H.; Xi, S. B.; Wang, X.; Xu, Z. J. SmCo5 with a reconstructed oxyhydroxide surface for spin-selective water oxidation at elevated temperature. Angew. Chem., Int. Ed. 2021, 60, 25884–25890.

[180]

Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; Xian, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.

[181]

Yu, M. Q.; Li, G. W.; Fu, C. G.; Liu, E. K.; Manna, K.; Budiyanto, E.; Yang, Q.; Felser, C.; Tüysüz, H. Tunable eg orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 5800–5805.

[182]

Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q.; Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

[183]

Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.

[184]

Li, Z. T.; Yang, J.; Chen, Z.; Zheng, C. Y.; Wei, L. Q.; Yan, Y. C.; Hu, H.; Wu, M. B.; Hu, Z. P. V “Bridged” Co–O to eliminate charge transfer barriers and drive lattice oxygen oxidation during water-splitting. Adv. Funct. Mater. 2021, 31, 2008822.

[185]

Zhang, X. Y.; Feng, C.; Dong, B.; Liu, C. G.; Chai, Y. M. High-voltage-enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Adv. Mater. 2023, 35, 2207066.

[186]

Kang, W. C.; Wei, R. F.; Yin, H.; Li, D. F.; Chen, Z.; Huang, Q. G.; Zhang, P. F.; Jing, H. W.; Wang, X. L.; Li, C. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation. J. Am. Chem. Soc. 2023, 145, 3470–3477.

[187]

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

[188]

Ren, J. H.; Liu, J.; Du, Y. M.; Li, S. S.; Wang, M. M.; Li, B.; Yang, B.; Wang, L.; Liu, Y. R. Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals. Nano Res. 2023, 16, 10810–10821.

[189]

Lassalle-Kaiser, B.; Zitolo, A.; Fonda, E.; Robert, M.; Anxolabéhère-Mallart, E. In situ observation of the formation and structure of hydrogen-evolving amorphous cobalt electrocatalysts. ACS Energy Lett. 2017, 2, 2545–2551

[190]

Guan, D. Q.; Ryu, G.; Hu, Z. W.; Zhou, J.; Dong, C. L.; Huang, Y. C.; Zhang, K. F.; Zhong, Y. J.; Komarek, A. C.; Zhu, M. et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat. Commun. 2020, 11, 3376.

[191]

Hung, S. F.; Hsu, Y. Y.; Chang, C. J.; Hsu, C. S.; Suen, N. T.; Chan, T. S.; Chen, H. M. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1701686.

[192]

Aiyappa, H. B.; Wilde, P.; Quast, T.; Masa, J.; Andronescu, C.; Chen, Y. T.; Muhler, M.; Fischer, R. A.; Schuhmann, W. Oxygen evolution electrocatalysis of a single MOF-derived composite nanoparticle on the tip of a nanoelectrode. Angew. Chem., Int. Ed. 2019, 58, 8927–8931.

[193]

Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

[194]
Li, A. L.; Kong, S.; Guo, C. X.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Han, H. X.; Xiao, J. P.; Nakamura, R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 2022 , 5, 109–118.
[195]

Simondson, D.; Chatti, M.; Bonke, S. A.; Tesch, M. F.; Golnak, R.; Xiao, J.; Hoogeveen, D. A.; Cherepanov, P. V.; Gardiner, J, L.; Tricoli, A. et al. Stable acidic water oxidation with a cobalt-iron-lead oxide catalyst operating via a cobalt-selective self-healing mechanism. Angew. Chem., Int. Ed. 2021, 60, 15821–15826.

[196]

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

[197]

Bai, J.; Mei, J.; Liao, T.; Sun, Q.; Chen, Z. G.; Sun, Z. Q. Molybdenum-promoted surface reconstruction in polymorphic cobalt for initiating rapid oxygen evolution. Adv. Energy Mater. 2022, 12, 2103247.

[198]

Li, R. C.; Hu, B. H.; Yu, T. W.; Chen, H. X.; Wang, Y.; Song, S. Q. Insights into correlation among surface–structure–activity of cobalt-derived pre-catalyst for oxygen evolution reaction. Adv. Sci. (Weinh.) 2020, 7, 1902830.

[199]

Duan, Y.; Lee, J. Y.; Xi, S. B.; Sun, Y. M.; Ge, J. J.; Ong, S. J. H.; Chen, Y. B.; Dou, S.; Meng, F. X.; Diao, C. Z. et al. Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 7418–7425.

[200]

Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

[201]

De Araújo, J. F.; Dionigi, F.; Merzdorf, T.; Oh, H. S.; Strasser, P. Evidence of Mars-Van-Krevelen mechanism in the electrochemical oxygen evolution on Ni-based catalysts. Angew. Chem., Int. Ed. 2021, 60, 14981–14988.

[202]

Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

[203]
Bai, X.; Ren, Z. Y.; Du, S. C.; Meng, H. Y.; Wu, J.; Xue, Y. Z.; Zhao, X. J.; Fu, H. G. In-situ structure reconstitution of NiCo2P x for enhanced electrochemical water oxidation. Sci. Bull. 2017 , 62, 1510–1518.
[204]

Ji, P. X.; Yu, R. H.; Wang, P. Y.; Pan, X. L.; Jin, H. H.; Zheng, D. Y.; Chen, D.; Zhu, J. W.; Pu, Z. H.; Wu, J. S. et al. Ultra-fast and in-depth reconstruction of transition metal fluorides in electrocatalytic hydrogen evolution processes. Adv. Sci. (Weinh.) 2022, 9, 2103567.

[205]

Zhuang, L. Z.; Li, Z. H.; Li, M. R.; Tao, H. L.; Mao, X.; Lian, C.; Ge, L.; Du, A. J.; Xu, Z.; Shao, Z. P. et al. A new operando surface restructuring pathway via ion-pairing of catalyst and electrolyte for water oxidation. Chem. Eng. J. 2023, 454, 140071.

[206]

Han, L. J.; Tang, P. Y.; Reyes-Carmona, Á.; Rodríguez-García, B.; Torréns, M.; Morante, J. R.; Arbiol, J.; Galan-Mascaros, J. R. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching. J. Am. Chem. Soc. 2016, 138, 16037–16045.

[207]

Zhou, T. L.; Wang, C. H.; Shi, Y. M.; Liang, Y.; Yu, Y. F.; Zhang, B. Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. J. Mater. Chem. A 2020, 8, 1631–1635.

[208]

Fan, K.; Zou, H. Y.; Dharanipragada, N. V. R. A.; Fan, L. Z.; Inge, A. K.; Duan, L. L.; Zhang, B. B.; Sun, L. C. Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 11359–11369.

[209]

He, J. T.; Liu, F.; Chen, Y. K.; Liu, X. Y.; Zhang, X. L.; Zhao, L. L.; Chang, B.; Wang, J. G.; Liu, H.; Zhou, W. J. Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134331.

[210]

Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

[211]

Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021, 593, 67–73.

[212]

Yang, L.; Qin, H. Y.; Dong, Z. H.; Wang, T. Z.; Wang, G. C.; Jiao, L. F. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small 2021, 17, 2102027.

[213]

Zhao, X. M.; Han, Q. L.; Li, J. D.; Du, X. H.; Liu, G. H.; Wang, Y. J.; Wu, L. L.; Chen, Z. W. Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem. Eng. J. 2022, 433, 133509.

[214]

Wu, C.; Wang, X. P.; Tang, Y.; Zhong, H. Y.; Zhang, X.; Zou, A. Q.; Zhu, J. L.; Diao, C. Z.; Xi, S. B.; Xue, J. M. et al. Origin of surface reconstruction in lattice oxygen oxidation mechanism based-transition metal oxides: A spontaneous chemical process. Angew. Chem., Int. Ed. 2023, 62, e202218599.

[215]

Peña, N. O.; Ihiawakrim, D.; Han, M.; Lassalle-Kaiser, B.; Carenco, S.; Sanchez, C.; Laberty-Robert, C.; Portehault, D.; Ersen, O. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano 2019, 13, 11372–11381.

[216]

Sun, J.; Xue, H.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Zhang, J. W.; Wang, Q. Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 19435–19441.

[217]

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; De Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

[218]

Yuan, L.; Liu, S.; Xu, S. C.; Yang, X. F.; Bian, J. L.; Lv, C. C.; Yu, Z. Y.; He, T.; Huang, Z. P.; Boukhvalov, D. W. et al. Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 2021, 82, 105732.

[219]

Chu, H. Q.; Feng, P. P.; Jin, B. W.; Ye, G.; Cui, S. S.; Zheng, M.; Zhang, G. X.; Yang, M. In-situ release of phosphorus combined with rapid surface reconstruction for Co–Ni bimetallic phosphides boosting efficient overall water splitting. Chem. Eng. J. 2022, 433, 133523.

[220]

An, L.; Zhang, H.; Zhu, J. M.; Xi, S. B.; Huang, B. L.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600.

[221]

Wang, L. Q.; Hao, Y. X.; Deng, L. M.; Hu, F.; Zhao, S.; Li, L. L.; Peng, S. J. Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 2022, 13, 5785.

[222]

Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.

[223]

Bergmann, A.; Jones, T. E.; Moreno, E. M.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.

[224]

Lin, X.; Huang, Y. C.; Hu, Z. W.; Li, L. L.; Zhou, J.; Zhao, Q. Y.; Huang, H. L.; Sun, J.; Pao, C. W.; Chang, Y. C. et al. 5f covalency synergistically boosting oxygen evolution of UCoO4 catalyst. J. Am. Chem. Soc. 2022, 144, 416–423.

[225]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[226]

Hung, S. F.; Chan, Y. T.; Chang, C. C.; Tsai, M. K.; Liao, Y. F.; Hiraoka, N.; Hsu, C. S.; Chen, H. M. Identification of stabilizing high-valent active sites by operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 2018, 140, 17263–17270.

[227]

Zhao, Y. G.; Dongfang, N. C.; Triana, C. A.; Huang, C.; Erni, R.; Wan, W. C.; Li, J. G.; Stoian, D.; Pan, L.; Zhang, P. et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ. Sci. 2022, 15, 727–739.

[228]

Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W. et al. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat. Commun. 2023, 14, 997.

[229]

Wang, C.; Zhai, P. L.; Xia, M. Y.; Liu, W.; Gao, J. F.; Sun, L. C.; Hou, J. G. Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction. Adv. Mater. 2023, 35, 2209307.

[230]

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

[231]

Chen, Y. B.; Sun, Y. M.; Wang, M. Y.; Wang, J. X.; Li, H. Y.; Xi, S. B.; Wei, C.; Xi, P. X.; Sterbinsky, G. E.; Freeland, J. W. et al. Lattice site-dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Sci. Adv. 2021, 7, eabk1788.

[232]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[233]

Chen, J. S.; Li, H.; Yu, Z. X.; Liu, C.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Henkelman, G.; Li, S. Z.; Wei, L. et al. Octahedral coordinated trivalent cobalt enriched multimetal oxygen-evolution catalysts. Adv. Energy Mater. 2020, 10, 2002593.

[234]

Zhou, X. B.; Liao, X. B.; Pan, X. L.; Yan, M. Y.; He, L.; Wu, P. J.; Zhao, Y.; Luo, W.; Mai, L. Q. Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by on-chip micro-device. Nano Energy 2021, 83, 105748.

Nano Research
Pages 2234-2269
Cite this article:
Liang Z, Shen D, Wang L, et al. Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications. Nano Research, 2024, 17(4): 2234-2269. https://doi.org/10.1007/s12274-023-6219-4
Topics:

797

Views

7

Crossref

7

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 25 August 2023
Revised: 18 September 2023
Accepted: 18 September 2023
Published: 21 November 2023
© Tsinghua University Press 2023
Return