Powered by an inexhaustible supply of solar energy, photoelectrochemical (PEC) nitrogen reduction reaction (NRR) provides an ideal solution for the synthesis of green ammonia (NH3). Although great efforts have been made in the past decades, there are still significant challenges in increasing the NH3 yields of the PEC-NRR devices. In addition to the issues of low activity and selectivity similar to electrochemical NRR, the progress of PEC-NRR is also impeded by the limited increase in NH3 yields as the electrode is enlarged. Here, we propose an editable electrode design strategy that parallels unit photo-electrodes to achieve a linear increase in NH3 yields with electrode active area. We demonstrate that the editable electrode design strategy minimizes the electrode charge transfer resistance, allowing more photo-generated carriers to reach the electrode surface and promote the catalytic reaction. We believe that this editable electrode design strategy provides an avenue to achieve sustainable PEC NH3 production.
Guo, Y.; Gu, J. X.; Zhang, R.; Zhang, S. C.; Li, Z.; Zhao, Y. W.; Huang, Z. D.; Fan, J.; Chen, Z. F.; Zhi, C. Y. Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 2021, 11, 2101699.
Peramaiah, K.; Ramalingam, V.; Fu, H. C.; Alsabban, M. M.; Ahmad, R.; Cavallo, L.; Tung, V.; Huang, K. W.; He, J. H. Optically and electrocatalytically decoupled Si photocathodes with a porous carbon nitride catalyst for nitrogen reduction with over 61.8% faradaic efficiency. Adv. Mater. 2021, 33, 2100812.
Ye, W.; Arif, M.; Fang, X. Y.; Mushtaq, M. A.; Chen, X. B.; Yan, D. P. Efficient photoelectrochemical route for the ambient reduction of N2 to NH3 based on nanojunctions assembled from MoS2 nanosheets and TiO2. ACS Appl. Mater. Interfaces 2019, 11, 28809–28817.
Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1S x on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202203022.
Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.
Wu, T. W.; Melander, M. M.; Honkala, K. Coadsorption of NRR and HER intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction. ACS Catal. 2022, 12, 2505–2512.
Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.
Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.
Mushtaq, M. A.; Arif, M.; Fang, X. Y.; Yasin, G.; Ye, W.; Basharat, M.; Zhou, B.; Yang, S. Y.; Ji, S. F.; Yan, D. P. Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions. J. Mater. Chem. A 2021, 9, 2742–2753.
Zhang, X. R.; Lyu, Y.; Zhou, H. J.; Zheng, J.; Huang, A. B.; Ding, J. J.; Xie, C.; De Marco, R.; Tsud, N.; Kalinovych, V. et al. Photoelectrochemical N2-to-NH3 fixation with high efficiency and rates via optimized Si-based system at positive potential versus Li0/+. Adv. Mater. 2023, 35, 2211894.
Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.
Zhang, D. M.; Yang, S. Y.; Fang, X. Y.; Li, H. F.; Chen, X. B.; Yan, D. P. In situ localization of BiVO4 onto two-dimensional MXene promoting photoelectrochemical nitrogen reduction to ammonia. Chin. Chem. Lett. 2022, 33, 4669–4674.
Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.
Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.
Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.
Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.
Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.
Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017, 7, 706–709.
Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.
Wang, Y.; Cui, X. Q.; Zhao, J. X.; Jia, G. R.; Gu, L.; Zhang, Q. H.; Meng, L. K.; Shi, Z.; Zheng, L. R.; Wang, C. Y. et al. Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 2019, 9, 336–344.
Armin, A.; Hambsch, M.; Wolfer, P.; Jin, H.; Li, J.; Shi, Z. G.; Burn, P. L.; Meredith, P. Efficient, large area, and thick junction polymer solar cells with balanced mobilities and low defect densities. Adv. Energy Mater. 2015, 5, 1401221.
Mishra, P. R.; Shukla, P. K.; Singh, A. K.; Srivastava, O. N. Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process. Int. J. Hydrogen Energy 2003, 28, 1089–1094.
Wang, H. N.; Cheng, C. Q.; Du, K.; Xu, Z. W.; Zhao, E. L.; Lan, N.; Yin, P. F.; Ling, T. A plasmon resonance enhanced photo-electrode to promote NH3 yield in sustainable N2 conversion. Chem.—Eur. J. 2023, 29, e202300204.
Du, K.; Lang, X. Y.; Yang, Y. Y.; Cheng, C. Q.; Lan, N.; Qiu, K. W.; Mao, J.; Wang, W. C.; Ling, T. Hydrogen-assisted activation of N2 molecules on atomic steps of ZnSe nanorods. Nano Res. 2023, 16, 6721–6727.
Yang, Y. Y.; Hu, C. J.; Shan, J. Q.; Cheng, C. Q.; Han, L. L.; Li, X. Z.; Wang, R. G.; Xie, W.; Zheng, Y.; Ling, T. Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem., Int. Ed. 2023, 62, e202300989.
Yang, Y. Y.; Zhang, L. F.; Hu, Z. P.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R. G.; Qiu, K. W.; Mao, J.; Ling, T. et al. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 4525–4531.
Kim, J. Y.; Jun, H.; Hong, S. J.; Kim, H. G.; Lee, J. S. Charge transfer in iron oxide photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: An electrochemical impedance study. Int. J. Hydrogen Energy 2011, 36, 9462–9468.
Young Kim, J.; Jang, J. W.; Hyun Youn, D.; Yul Kim, J.; Sun Kim, E.; Sung Lee, J. Graphene-carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Adv. 2012, 2, 9415–9422.
Wang, D.; Sheng, T.; Chen, J. F.; Wang, H. F.; Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 2018, 1, 291–299.
Qian, X. T.; Wang, G. Y.; Li, Z. Y.; Ying, L.; Cao, Y. Morphology evolution via a generic solvent additive concept enables large-area all-polymer solar cells with negligible PCE loss. Macromol. Mater. Eng. 2022, 307, 2200331.
Ma, L.; Cheng, Y. S.; Cavataio, G.; McCabe, R. W.; Fu, L. X.; Li, J. H. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO x over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl. Catal. B: Environ. 2014, 156–157, 428–437