Photothermal carbon dioxide (CO2) methanation has attracted increasing interest in solar fuel synthesis, which employs the advantages of photocatalytic H2O splitting as a hydrogen source and photothermal catalytic CO2 reduction. This work prepared three-dimensional (3D) honeycomb N-doped carbon (NC) loaded with core–shell NiO@Ni nanoparticles generated in situ at 500 °C (NiO@Ni/NC-500). Under the photothermal catalysis (200 °C, 1.5 W/cm2), the CH4 evolution rate of NiO@Ni/NC-500 reached 5.5 mmol/(g·h), which is much higher than that of the photocatalysis (0.8 mmol/(g·h)) and the thermal catalysis (3.7 mmol/(g·h)). It is found that the generated localized surface plasmon resonance enhances the injection of hot electrons from Ni to NiO, while thermal heating accelerates the thermal motion of radicals, thus generating a strong photo-thermal synergistic effect on the reaction. The CO2 reduction to CH4 follows the *OCH pathway. This work demonstrates the synergistic effect of NiO@Ni and NC can enhance the catalytic performance of photothermal CO2 reduction reaction coupled with water splitting reaction.
Wang, Z. Q.; Yang, Z. Q.; Kadirova, Z. C.; Guo, M. N.; Fang, R. M.; He, J.; Yan, Y. F.; Ran, J. Y. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord. Chem. Rev. 2022, 473, 214794.
Song, C. Q.; Wang, Z. H.; Yin, Z.; Xiao, D. Q.; Ma, D. Principles and applications of photothermal catalysis. Chem Catal. 2022, 2, 52–83.
Guo, Y. C.; Wang, X. X.; Feng, L.; Liu, F.; Liang, J. S.; Wang, X. M.; Zhang, X. Large-scale and solvent-free synthesis of magnetic bamboo-like nitrogen-doped carbon nanotubes with nickel active sites for photothermally driven CO2 fixation. Green Chem. 2023, 25, 3585–3591.
Li, Y. R.; Liu, J. X.; Sun, Z. J.; Li, R.; Guo, L. J.; Zhang, X. C.; Wang, Y. W.; Wang, Y. F.; Yu, Z. B.; Fan, C. M. Enhanced photocatalytic ammonia synthesis over a Bi/carbon cloth float: Triphase reaction system-assisted N2 supply and photothermal co-activation. Green Chem. 2022, 24, 9253–9262.
Lin, L. L.; Wang, K.; Yang, K.; Chen, X.; Fu, X. Z.; Dai, W. X. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO2- x N x . Appl. Catal. B: Environ. 2017, 204, 440–455.
Chen, X.; Li, Q.; Zhang, M.; Li, J. J.; Cai, S. C.; Chen, J.; Jia, H. P. MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation. ACS Appl. Mater. Interfaces 2020, 12, 39304–39317.
Weatherbee, G. D.; Bartholomew, C. H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J. Catal. 1982, 77, 460–472.
Yang, Y. S.; Yuan, S. Y.; Pan, H. L.; Li, Z. X.; Shen, X. L.; Gao, Y. J. Catalytically transforming cellulose into methane under natural solar irradiation. Green Chem. 2023, 25, 1004–1013.
Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.
Li, Q.; Gao, Y. X.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. P. Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2. Appl. Catal. B: Environ. 2022, 303, 120905.
Huang, Q. Q.; Fang, Z. B.; Pang, K.; Qin, W. K.; Liu, T. F.; Cao, R. The impact of secondary building units in metal-organic frameworks on plasmonic gold-sensitized photocatalysis. Adv. Funct. Mater. 2022, 32, 2205147.
Wang, Z. J.; Song, H.; Pang, H.; Ning, Y. X.; Dao, T. D.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Fu, Q.; Nagao, T. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B: Environ. 2019, 250, 10–16.
Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W.; Zhu, H. Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272–4285.
Zhao, W.; Li, Y. J.; Zhao, P. S.; Zhang, L. L.; Dai, B. L.; Xu, J. M.; Huang, H. B.; He, Y. L.; Leung, D. Y. C. Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chem. Eng. J. 2021, 405, 126555.
Tang, H. B.; Tang, Z. H.; Bright, J.; Liu, B. T.; Wang, X. J.; Meng, G. W.; Wu, N. Q. Visible-light localized surface plasmon resonance of WO3− x nanosheets and its photocatalysis driven by plasmonic hot carriers. ACS Sustain. Chem. Eng. 2021, 9, 1500–1506.
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447
Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.
Pan, J. Q.; Xiao, G. S.; Niu, J. J.; Fu, Y. Y.; Cao, J.; Wang, J. J.; Zheng, Y. Y.; Zhu, M.; Li, C. R. The photocatalytic hydrogen evolution and photoreduction CO2 selective enhancement of Co3O4/Ti3+-TiO2/NiO hollow core–shell dual pn junction. J. Cleaner Prod. 2022, 380, 135037.
Li, J. H.; Zhang, Y. M.; Huang, Y. L.; Luo, B.; Jing, L.; Jing, D. W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review. Nano Res. 2022, 15, 10268–10291.
Wang, R.; He, Z.; Kurouski, D. Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering. Nano Res. 2023, 16, 1545–1551.
Ma, J. M.; Liu, X. F.; Wang, R. W.; Zhang, F.; Tu, G. L. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677.
Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.
Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B: Environ. 2020, 266, 118618.
Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.
Wang, W. K.; Xu, D. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. J. Mater. Chem. A 2017, 5, 5020–5029.
Wang, J. M.; Jiang, J. Z.; Li, F. Y.; Zou, J.; Xiang, K.; Wang, H. T.; Li, Y. J.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58.
Kumar, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V. K.; Nguyen, V. H.; Singh, P. C-, N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: Viewpoints and challenges. J. Mater. Chem. A 2021, 9, 111–153.
Xu, M.; Hu, X. T.; Wang, S. L.; Yu, J. C.; Zhu, D. J.; Wang, J. Y. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content. J. Catal. 2019, 377, 652–661.
Wang, L. B.; Tan, H. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 411, 128501.
Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565.
Chen, Y.; Dai, Y. T.; Li, Y. W.; Hou, Z. X.; Gao, B. Y.; Yue, Q. Y.; Li, Q. Oxygen vacancies-mediated CuO@N-doped carbon nanocomposites for non-radical-dominated photothermal catalytic degradation of contaminants. J. Cleaner Prod. 2023, 389, 136054.
Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.
Duan, C. Y.; Ding, M. L.; Feng, Y.; Cao, M. J.; Yao, J. F. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Sep. Purif. Technol. 2022, 285, 120359.
He, H. B.; Gao, X. M.; Xu, K. X.; Li, H. Y.; Hu, Y. N.; Yang, C. M.; Fu, F. 1D/0D Z-scheme heterostructure of Bi2S3/Cd X Zn1− X S with strong interfacial electric field coupling enhanced mass transfer based on gas-liquid-solid micro interface contact for efficient photothermal synergistic catalytic CO2 reduction to syngas. Chem. Eng. J. 2022, 450, 138266.
He, L.; Wu, H. Y.; Zhang, W. Y.; Bai, X.; Chen, J. K.; Ikram, M.; Wang, R. H.; Shi, K. Y. High-dispersed Fe2O3/Fe nanoparticles residing in 3D honeycomb-like N-doped graphitic carbon as high-performance room-temperature NO2 sensor. J. Hazard. Mater. 2021, 405, 124252.
Inagaki, M. Pores in carbon materials-importance of their control. New Carbon Mater. 2009, 24, 193–232.
Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B: Environ. 2018, 224, 563–571.
He, L.; Zhang, W. Y.; Zhao, K.; Liu, S.; Zhao, Y. Core–shell Cu@Cu2O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 4758–4769.
He, L.; Zhang, W. Q.; Liu, S.; Zhao, Y. Three-dimensional palm frondlike Co3O4@NiO/graphitic carbon composite for photocatalytic CO2 reduction. J. Alloys Compd. 2023, 934, 168053.
Mateo, D.; De Masi, D.; Albero, J.; Lacroix, L. M.; Fazzini, P. F.; Chaudret, B.; García, H. Synergism of Au and Ru nanoparticles in low-temperature photoassisted CO2 methanation. Chem.—Eur. J. 2018, 24, 18436–18443.
Li, Y. Y.; Wang, C. H.; Song, M.; Li, D. S.; Zhang, X. T.; Liu, Y. C. TiO2− x /CoO x photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal. B: Environ. 2019, 243, 760–770.
Wei, G. H.; Zheng, D. M.; Xu, L. J.; Guo, Q. S.; Hu, J. F.; Sha, N.; Zhao, Z. Photothermal catalytic activity and mechanism of LaNi x Co1− x O3 (0 ≤ x ≤ 1) perovskites for CO2 reduction to CH4 and CH3OH with H2O. Mater. Res. Express 2019, 6, 086221.
Rohlfs, J.; Bossers, K. W.; Meulendijks, N.; Valega Mackenzie, F.; Xu, M.; Verheijen, M. A.; Buskens, P.; Sastre, F. Continuous-flow sunlight-powered CO2 methanation catalyzed by γ-Al2O3-supported plasmonic Ru nanorods. Catalysts 2022, 12, 126.
Siakavelas, G. I.; Charisiou, N. D.; AlKhoori, S.; AlKhoori, A. A.; Sebastian, V.; Hinder, S. J.; Baker, M. A.; Yentekakis, I. V.; Polychronopoulou, K.; Goula, M. A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Appl. Catal. B: Environ. 2021, 282, 119562.
Li, D.; Chen, W. H.; Wu, J. P.; Jia, C. Q.; Jiang, X. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: Focus on N functional groups. J. Mater. Chem. A 2020, 8, 24977–24995.
Miao, H.; Li, S. H.; Wang, Z. H.; Sun, S. S.; Kuang, M.; Liu, Z. P.; Yuan, J. L. Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int. J. Hyd. Energy 2017, 42, 28298–28308.
Li, L. J.; Wang, Y.; Gu, X.; Yang, Q. P.; Zhao, X. B. Increasing the CO2/N2 selectivity with a higher surface density of pyridinic lewis basic sites in porous carbon derived from a pyridyl-ligand-based metal-organic framework. Chem.—Asian J. 2016, 11, 1913–1920.
Bian, H.; Liu, T. F.; Li, D.; Xu, Z.; Lian, J. H.; Chen, M.; Yan, J. Q.; Liu, S. F. Unveiling the effect of interstitial dopants on CO2 activation over CsPbBr3 catalyst for efficient photothermal CO2 reduction. Chem. Eng. J. 2022, 435, 135071.
Wu, X. Z.; Zhou, J.; Xing, W.; Zhang, Y.; Bai, P.; Xu, B. J.; Zhuo, S. P.; Xue, Q. Z.; Yan, Z. F. Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers. Carbon 2015, 94, 560–567.
Wang, T. F.; Zhai, Y. B.; Zhu, Y.; Peng, C.; Xu, B. B.; Wang, T.; Li, C. T.; Zeng, G. M. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresource Technol. 2018, 247, 182–189.
Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.