AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries

Guoyin Zhu1,§ ( )Qingzhu Wu2,§Xianghua Zhang3Yuwen Bao1Xuan Zhang1Zhuoyao Shi1Yizhou Zhang1 ( )Lianbo Ma2 ( )
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China

§ Guoyin Zhu and Qingzhu Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Metal sulfides with high chemical affinity to intermediate polysulfides and remarkable electrocatalytic activity toward polysulfide conversions have been extensively utilized in lithium-sulfur (Li-S) batteries. This review summarizes the recent progress on metal sulfide in sulfur hosts and separator coating layers for Li-S batteries, presents the remaining issues/challenges, and gives the future perspectives for practical applications. This work will provide new guidance for exploring high-performance metal sulfide-based Li-S batteries.

Abstract

Lithium-sulfur (Li-S) batteries, known for their high energy density, are attracting extensive research interest as a promising next-generation energy storage technology. However, their widespread use has been hampered by certain issues, including the dissolution and migration of polysulfides, along with sluggish redox kinetics. Metal sulfides present a promising solution to these obstacles regarding their high electrical conductivity, strong chemical adsorption with polysulfides, and remarkable electrocatalytic capabilities for polysulfide conversion. In this review, the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries is systematically summarized, with a special focus on sulfur hosts and functional separators. The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials’ structure and electrochemical performances. Moreover, the remaining issues/challenges and future perspectives are highlighted. By offering a detailed understanding of the crucial roles of metal sulfides, this review dedicates to contributing valuable knowledge for the pursuit of high-efficiency Li-S batteries based on metal sulfides.

References

[1]

Zhuang, Z. H.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[2]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[3]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[4]

Zhuang, Z. H.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[5]

Kang, Q.; Li, Y.; Zhuang, Z. H.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[6]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[7]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[8]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[9]

Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

[10]

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Chen, Y. M.; Jin, Z. Recent advances in emerging non-lithium metal-sulfur batteries: A review. Adv. Energy Mater. 2021, 11, 2100770.

[11]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[12]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[13]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[14]

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

[15]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[16]

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

[17]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[18]

Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

[19]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

[20]

Wang, Z. W.; Cheng, Y. W.; Wang, S. Y.; Xu, J.; Peng, B.; Luo, D.; Ma, L. B. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Res. 2023, 16, 9335–9343.

[21]

Hencz, Z.; Chen, H.; Wu, Z. Z.; Qian, S. S.; Chen, S.; Gu, X. X.; Liu, X. H.; Yan, C.; Zhang, S. Q. Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2022, 2, 20210131.

[22]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[23]

Wang, Y. Z.; Huang, X. X.; Zhang, S. Q.; Hou, Y. L. Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345.

[24]
Liu, Y. H.; Wang, C. Y.; Yang, S. L.; Cao, F. F.; Ye, H. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. J. Energy Chem. 2022 , 66, 429‒439.
[25]

Ma, L. B.; Wang, Y. R.; Wang, Z. W.; Wang, J. L.; Cheng, Y. W.; Wu, J. X.; Peng, B.; Xu, J.; Zhang, W.; Jin, Z. Wide-temperature operation of lithium-sulfur batteries enabled by multi-branched vanadium nitride. ACS Nano 2023, 17, 11527–11536.

[26]

Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2208666.

[27]

Ren, L. T.; Liu, J.; Pato, A. H.; Wang, Y.; Lu, X. W.; Chandio, I. A.; Zhou, M. Y.; Liu, W.; Xu, H. J.; Sun, X. M. Rational design of nanoarray structures for lithium-sulfur batteries: Recent advances and future prospects. Mater. Futures 2023, 2, 042103.

[28]

He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

[29]

Zeng, P.; Su, B.; Wang, X. L.; Li, X. Q.; Yuan, C.; Liu, G. L.; Dai, K. H.; Mao, J.; Chao, D. L.; Wang, Q. Y. et al. In situ reconstruction of electrocatalysts for lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2023, 33, 2301743.

[30]

Wang, F. F.; Li, J.; Zhao, J.; Yang, Y. X.; Su, C. L.; Zhong, Y. L.; Yang, Q. H.; Lu, J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, Opportunities, and challenges. ACS Mater. Lett. 2020, 2, 1450–1463.

[31]

Ye, Z. Q.; Sun, H. B.; Gao, H. H.; Sun, L. X.; Guo, J.; Jiang, Y.; Wu, C. C.; Zheng, S. J. Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium-sulfur batteries. Energy Storage Mater. 2023, 60, 102855.

[32]

Hu, X. H.; Huang, T.; Zhang, G. Y.; Lin, S. J.; Chen, R. W.; Chung, L.; He, J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord. Chem. Rev. 2023, 475, 214879.

[33]

Dong, Y. Y.; Li, T. T.; Cai, D.; Yang, S.; Zhou, X. M.; Nie, H. G.; Yang, Z. Progress and prospect of organic electrocatalysts in lithium-sulfur batteries. Front. Chem. 2021, 9, 703354.

[34]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[35]

Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Henkelman, G. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.

[36]

Wu, L.; Yu, Y.; Dai, Y. Q.; Zhao, Y. F.; Zeng, W.; Liao, B.; Pang, H. Multisize CoS2 particles intercalated/coated-montmorillonite as efficient sulfur host for high-performance lithium-sulfur batteries. ChemSusChem 2022, 15, e202101991.

[37]

Xu, S. Q.; Kwok, C. Y.; Zhou, L. D.; Zhang, Z. Z.; Kochetkov, L.; Nazar, L. F. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 2021, 31, 2004239.

[38]

Guo, T. Q.; Song, Y. Z.; Sun, Z. T.; Wu, Y. H.; Xia, Y.; Li, Y. Y.; Sun, J. H.; Jiang, K.; Dou, S. X.; Sun, J. Y. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries. J. Energy Chem. 2020, 42, 34–42.

[39]

Wang, D. S.; Zhao, S.; Li, F.; He, L.; Zhao, Y. Y.; Zhao, H. N.; Liu, Y. H.; Wei, Y. J.; Chen, G. Insight into the Anchoring and Catalytic Effects of VO2 and VS2 Nanosheets as Sulfur Cathode Hosts for Li-S Batteries. ChemSusChem 2019, 12, 4671–4678.

[40]

Yi, Y. K.; Liu, Z. C.; Yang, P.; Wang, T.; Zhao, X. W.; Huang, H. Y.; Cheng, Y. H.; Zhang, J. Y.; Li, M. T. MoS2 nanorods with inner caves through synchronous encapsulation of sulfur for high performance Li-S cathodes. J. Energy Chem. 2020, 45, 18–24.

[41]

Xu, Z. L.; Onofrio, N.; Wang, J. Boosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 17646–17656.

[42]

Abraham, A. M.; Kammampata, S. P.; Ponnurangam, S.; Thangadurai, V. Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li-S battery: Combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 2019, 11, 35729–35737.

[43]

Liu, X. C.; Yang, Y.; Wu, J. J.; Liu, M.; Zhou, S. P.; Levin, B. D. A.; Zhou, X. D.; Cong, H. J.; Muller, D. A.; Ajayan, P. M. et al. Dynamic hosts for high-performance Li-S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction. ACS Energy Lett. 2018, 3, 1325–1330.

[44]

Chung, S. H.; Luo, L.; Manthiram, A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries. ACS Energy Lett. 2018, 3, 568–573.

[45]

Dai, C. L.; Hu, L. Y.; Li, X. Y.; Xu, Q. J.; Wang, R.; Liu, H.; Chen, H.; Bao, S. J.; Chen, Y. M.; Henkelman, G. et al. Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy 2018, 53, 354–361.

[46]

Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnur, H, Bigall, N. C.; Feldhoff, A. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

[47]

Tang, J. L.; Jin, C. Q.; Huo, L. X.; Du, S. Y.; Xu, X. H.; Yan, Y. T.; Jiang, K.; Shang, L. Y.; Zhang, J. Z.; Li, Y. W. et al. Ultrathin Fe-ReS2 nanosheets as electrocatalysts for accelerating sulfur reduction in Li-S batteries. ACS Appl. Mater. Interfaces 2022, 14, 50870–50879.

[48]

Zhou, W.; Ning, S. L.; Fan, B.; Wu, Q. K.; Mi, L.; Zhao, D. K.; Zhou, K.; Wang, N. One-dimensional confined p-n junction Co3S4/MoS2 interface nanorods significantly enhance polysulfide redox kinetics for Li-S batteries. J. Mater. Chem. A 2023, 11, 926–936.

[49]

Liu, K. L.; Zhang, X. D.; Miao, F. J.; Wang, Z.; Zhang, S. J.; Zhang, Y. S.; Zhang, P.; Shao, G. S. In situ electrochemical intercalation-induced phase transition to enhance catalytic performance for lithium-sulfur battery. Small 2021, 17, 2100065

[50]

Xi, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.

[51]

Zeng, P.; Zou, H.; Cheng, C.; Wang, L.; Yuan, C.; Liu, G. L.; Mao, J.; Chan, T. S.; Wang, Q. Y.; Zhang, L. In situ non-topotactic reconstruction-induced synergistic active centers for polysulfide cascade catalysis. Adv. Funct. Mater. 2023, 33, 2214770.

[52]

Wang, Y. Y.; Xiong, Y. T.; Huang, Q. Y.; Bi, Z. X.; Zhang, Z. X.; Guo, Z. Z.; Wang, X. B.; Mei, T. A bifunctional VS2–Ti3C2 heterostructure electrocatalyst for boosting polysulfide redox in high performance lithium-sulfur batteries. J. Mater. Chem. A 2022, 10, 18866–18876.

[53]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[54]

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

[55]
Dong, Y. F.; Lu, P. F.; Shi, H. D.; Qin, J. Q.; Chen, J.; Ren, W. C.; Cheng, H. M.; Wu, Z. S. 2D hierarchical yolk–shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. J. Energy Chem. 2019 , 36, 64‒73.
[56]

Li, W. L.; Qian, J.; Zhao, T.; Ye. Y. S.; Xing, Y.; Huang, Y. X.; Wei, L.; Zhang, N. X.; Chen, N.; Li, L. et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 2019, 6, 1802362.

[57]

Li, H.; Wen, X. Z.; Shao, F.; Zhou, C.; Zhang, Y. F.; Hu, N. T.; Wei, H. Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chem. Eng. J. 2021, 412, 128562.

[58]

Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201

[59]

Wei, J.; Chen, B.; Su, H.; Jiang, C.; Li, X. T.; Qiao, S. S.; Zhang, H. Co9S8 nanotube wrapped with graphene oxide as sulfur hosts with ultra-high sulfur content for lithium-sulfur battery. Ceram. Int. 2021, 47, 2686–2693.

[60]

Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

[61]

He, D. Q.; Liu, J. B.; Zhang, B. X.; Wang, M.; Liu, C. Z.; Huo, Y. T.; Rao, Z. H. Enhancing adsorption and catalytic activity of Marigold-like In2S3 in lithium-sulfur batteries by vacancy modification. Chem. Eng. J. 2022, 427, 131711.

[62]

Shin, W.; Lu, J.; Ji, X. L. ZnS coating of cathode facilitates lean-electrolyte Li-S batteries. Carbon Energy 2019, 1, 165–172.

[63]

He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350.

[64]

Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.

[65]

Li, F.; Wang, L.; Qu, G. M.; Hou, P. Y.; Kong, L. L.; Huang, J. Z.; Xu, X. J. An integrated approach to configure rGO/VS4/S composites with improved catalysis of polysulfides for advanced lithium-sulfur batteries. Chin. Chem. Lett. 2022, 33, 3909–3915.

[66]
Luo, L.; Li, J. Y.; Asl, H. Y.; Manthiram, A. In situ assembled VS4 as a polysulfide mediator for high-loading lithium-sulfur batteries. ACS Energy Lett. 2020 , 5, 1177‒1185.
[67]

Cui, B. W.; Cai, X. M.; Wang, W. Q.; Saha, P.; Wang, G. C. Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. J. Energy Chem. 2022, 66, 91–99.

[68]

Liu, M. M.; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 20788–20795.

[69]

You, Y.; Ye, Y. W.; Wei, M. L.; Sun, W. J.; Tang, Q.; Zhang, J.; Chen, X.; Li, H. Q.; Xu, J. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2019, 335, 671–678.

[70]

Sun, L.; Liu, Y. X.; Xie, J.; Fan. L. L.; Wu, J.; Jiang, R. Y.; Jin, Z. Polar Co9S8 anchored on Pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries. Chem. Eng. J. 2023, 451, 138370.

[71]

Luo, L.; Chung, S. H.; Manthiram, A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1801014.

[72]

Guo, D. Y.; Zhang, Z. H.; Xi, B.; Yu, Z. S.; Zhou, Z.; Chen, X. A. Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 3834–3844.

[73]

Gao, C.; Fang, C. Z.; Zhao, H. M.; Yang, J. Y.; Gu, Z. D.; Sun, W.; Zhang, W. N.; Li, S.; Xu, L. C.; Li, X. Y. et al. Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. J. Power Sources 2019, 421, 132–138.

[74]

Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 7491–7499.

[75]

Zhang, R.; Dong, Y. T.; Al-Tahan, M. A.; Zhang, Y. Y.; Wei, R. P.; Ma, Y. H.; Yang, C. C.; Zhang, J. M. Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 2021, 60, 85–94.

[76]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[77]

Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136.

[78]

Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103–13112.

[79]

Tian, D.; Song, X. Q.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium-sulfur batteries. ACS Nano 2021, 15, 16515–16524.

[80]

Liang, X. Q.; Cai, J. Y.; Qiu, S. S.; Niu, S. W.; Liu, Y. L.; Wang, X.; Wang, G. M.; Chen, Z.; Chen, M. H. Bidirectional catalyst design for lithium-sulfur batteries: Phase regulation cooperates with N-doping. J. Mater. Chem. A 2022, 10, 23780–23789.

[81]

Wang, S. Z.; Feng, S. P.; Liang, J. W.; Su, Q. M.; Zhao, F. P.; Song, H. J.; Zheng, M.; Sun, Q.; Song, Z. X.; Jia, X. H. et al. Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003314.

[82]

Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-s loading Li-S batteries. Adv. Funct. Mater. 2019, 29, 1806724.

[83]

Shi, T. Y.; Zhao, C. Y.; Zhou, Y. X.; Yin, H. H.; Song, C. Q.; Qin, L.; Wang, Z. L.; Shao, H. B.; Yu, K. A special core-shell ZnS-CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 599, 416–426.

[84]

Zhang, H.; Zou, M. C.; Zhao, W. Q.; Wang, Y. S.; Chen, Y. J.; Wu, Y. Z.; Dao, L. X.; Cao, A. Y. Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and long-life lithium-sulfur batteries. ACS Nano 2019, 13, 3982–3991.

[85]

Cai, D.; Wang, Li, L.; Zhang, Y. P.; Li, J. Z.; Chen, D.; Tu, H. R.; Han, W. Self-assembled CdS quantum dots in carbon nanotubes: Induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance. J. Mater. Chem. A 2019, 7, 806–815.

[86]

Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

[87]

Ma, Z. Y.; Liu, Y.; Gautam, J.; Liu, W. T.; Chishti, A. N.; Gu, J.; Yang, G.; Wu, Z.; Xu, J.; Chen, M. et al. Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li-S Batteries. Small 2021, 17, 2102710.

[88]

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

[89]

Wang, S. Z.; Chen, H. Y.; Liao, J. X.; Sun, Q.; Zhao, F. P.; Luo, J.; Lin, X. T.; Niu, X. B.; Wu, M. Q.; Li, R. Y. et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 2019, 4, 755–762.

[90]

Zhou, J.; Liu, X. J.; Zhou, J. B.; Zhao, H. Y.; Lin, N.; Zhu, L. Q.; Zhu, Y. C.; Wang, G. M.; Qian, Y. T. Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz. 2019, 4, 182–189.

[91]

Zhao, S. Y.; Tian, X. H.; Zhou, Y. K.; Ma, B.; Natarajan, A. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 22–29.

[92]
He, J. R.; Bhargav, A.; Asl, H. Y.; Chen, Y. F.; Manthiram, A. 1T′-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries. Adv. Energy Mater. 2020 , 10, 2001017.
[93]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[94]

Xiang, K. X.; Wen, X. Y.; Hu, J.; Wang, S. C.; Chen, H. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries. ChemSusChem 2019, 12, 3602–3614

[95]

Zhao, X. S.; Zhang, D. A.; Sun, C. X.; Liu, J. J.; Zhao, T. M.; Wang, M.; Song, Y. T.; Xu, H. W.; Wang, Q. Synthesis of hollow S/FeS2@carbon nanotubes microspheres and their long-term cycling performances as cathode material for lithium-sulfur batteries. J. Electroanaly. Chem. 2022, 922, 116724.

[96]

Chen, C. H.; Lin, S. H.; Wu, Y. J.; Su, J. T.; Cheng, C. C.; Cheng, P. Y.; Ting, Y. C.; Lu, S. Y. MOF-derived cobalt disulfide/nitrogen-doped carbon composite polyhedrons linked with multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries. Chem. Eng. J. 2022, 431, 133924.

[97]

Zhang, X. Z.; Shang, C. Q.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. Constructing Co3S4 nanosheets coating n-doped carbon nanofibers as freestanding sulfur host for high-performance lithium-sulfur batteries. Adv. Sci. 2020, 7, 2002037.

[98]

Meng, T.; Gao, J. C.; Liu, Y. N.; Zhu, J. H.; Zhang, H.; Ma, L.; Xu, M. W.; Li, C. M.; Jiang, J. Highly puffed Co9S8/carbon nanofibers: A functionalized S carrier for superior Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 26798–26806.

[99]
Yao, S. S. Zhang, C. J.; Xie, F. W.; Xue, S. K.; Gao, K. D.; Guo, R. D.; Shen, X. Q.; Li, T. B.; Qin, S. B. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofibers as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries. ACS Sustainable Chem. Eng. 2020 , 8, 2707‒2715.
[100]

Luo, J.; Liu, X. F.; Lei, W.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Self-standing lotus root-like host materials for high-performance lithium-sulfur batteries. Adv. Fiber Mater. 2022, 4, 1656–1668.

[101]

Zhang, C. Y.; Sun, G. W.; Bai, Y. F.; Dai, Z.; Zhao, Y. R.; Gao, X. P.; Sun, G. Z.; Pan, X. B.; Pan, X. J.; Zhou, J. Y. Ultrastable lithium-sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides. J. Mater. Chem. A 2020, 8, 18358–18366.

[102]

Liu, Q. Y.; Sun, G. W.; Pan, J. L.; Wang, S. K.; Zhang, C. Y.; Wang, Y. C.; Gao, X. P.; Sun, G. Z.; Zhang, Z. X.; Pan, X. J. et al. Metal ion cutting-assisted synthesis of defect-rich mos2 nanosheets for high-rate and ultrastable Li2S catalytic deposition. ACS Appl. Mater. Interfaces 2022, 14, 37771–37781.

[103]

Wang, J. Y.; Zhao, Y.; Li, G. R.; Luo, D.; Liu, J. B.; Zhang, Y. G.; Wang, X.; Shui, L. L.; Chen, Z. W. Aligned sulfur-deficient ZnS1− x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy 2021, 84, 105891.

[104]

Zeng, P.; Zhou, Z. Y.; Li, B.; Yu, H.; Zhou, X.; Chen, G. R.; Chang, B. B.; Chen, M. F.; Shu, H. B.; Su. J. C. et al. Insight into the catalytic role of defect-enriched vanadium sulfide for regulating the adsorption-catalytic conversion behavior of polysulfides in Li-S batteries. ACS Appl. Mater. Interfaces 2022, 14, 35833–35843.

[105]

Guo, B. S.; Bandaru, S.; Dai, C. L.; Chen, H.; Zhang, Y. Q.; Xu, Q. J.; Bao, S. J.; Chen, M. Y.; Xu, M. W. Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 43707–43715.

[106]

Chen, M. F.; Xu, W. T.; Jamil, S.; Jiang, S. X.; Huang, C.; Wang, X. Y.; Wang, Y.; Shu, H. B.; Xiang, K. X.; Zeng, P. Multifunctional heterostructures for polysulfide suppression in high-performance lithium-sulfur cathode. Small 2018, 14, 1803134.

[107]

Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

[108]

Li, M. R.; Peng, H. Y.; Pei, Y.; Wang, F.; Zhu, Y.; Shi, R. Y.; He, X. X.; Lei, Z. B.; Liu, Z. H.; Sun, J. MoS2 nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries. Nanoscale 2020, 12, 23636–23644.

[109]

Shao, Q. J.; Lu, P. F.; Xu, L.; Guo, D. C.; Gao, J.; Wu, Z. S.; Chen, J. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries. J. Energy Chem. 2020, 51, 262–271.

[110]

Wang, H. E.; Li, X. C.; Qin, N.; Zhao, X.; Cheng, H.; Cao, G. Z.; Zhang, W. J. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 2019, 7, 12068–12074.

[111]

He, T.; Ru, J. J.; Feng, Y. T.; Bi, D. P.; Zhang, J. S.; Gu, F.; Zhang, C.; Yang, J. H. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries. J. Mater. Sci. Technol. 2022, 98, 136–142.

[112]

Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

[113]

Xie, D. J.; Mei, S. L.; Xu, Y. L.; Quan, T.; Härk, E.; Kochovski, Z.; Lu, Y. Efficient sulfur host based on yolk–shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries. ChemSusChem 2021, 14, 1404–1413.

[114]

Zeng, Z. P.; Li, W.; Chen, X. J.; Zhang, N.; Qi, H.; Liu, X. B. Nanosized FeS2 particles caged in the hollow carbon shell as a robust polysulfide adsorbent and redox mediator. ACS Sustainable Chem. Eng. 2020, 8, 3261–3272.

[115]

Cao, B. K.; Huang, J. T.; Zhao, F. Y.; Mo, Y.; Chen, Y.; Fang, H. T. Surface chemistry of tube-in-tube nanostructured cuprous sulfide@void@carbon in catalytical polysulfide conversion. J. Mater. Chem. A 2019, 7, 12815–12824.

[116]

Jing, W. T.; Zu, J. H.; Zou, K. Y.; Dai, X.; Song, Y. Y.; Sun, J. J.; Chen, Y. Z.; Tan, Q.; Liu, Y. M. Tin disulfide embedded on porous carbon spheres for accelerating polysulfide conversion kinetics toward lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 635, 32–43.

[117]

Yan, X. J.; Guo, W. Q.; Li, W. D.; Li, G. L.; Yue, Z. J.; Liu, J.; Peng, H. R.; Yin, Z. M.; Zhang, Z. H.; Mao, C. M. et al. Coupling highly dispersed Sb2S3 nanodots with nitrogen/sulfur dual-doped porous carbon nanosheets for efficient immobilization and catalysis of polysulfides conversion. Chem. Eng. J. 2021, 420, 127688.

[118]

Li, F. Y.; Wu, Y. J.; Lin, Y. X.; Li, J. H.; Sun, Y. J.; Nan, H. X.; Wu, M.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 626, 535–543.

[119]

Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.

[120]

Zhang, X. M.; Wei, Y. H.; Wang, B. Y.; Wang, M.; Wang, Q.; Wu, H. Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium-sulfur batteries. Nano-Micro Lett. 2019, 11, 78.

[121]

Ai, G.; Hu, Q. Q.; Zhang, L.; Dai, K. H.; Wang, J.; Xu, Z. J.; Huang, Y.; Zhang, B.; Li, D. J.; Zhang, T. et al. Investigation of the nanocrystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 33987–33999.

[122]

Jin, Z. S.; Zhao, M.; Lin, T. N.; Liu, B. Q.; Zhang, Q.; Zhang, L. Y.; Chen, L. H.; Li, L.; Su, Z. M.; Wang, C. G. Rational design of well-dispersed ultrafine CoS2 nanocrystals in micro-mesoporous carbon spheres with a synergistic effect for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 10885–10890.

[123]

Zhang, N.; Yang, Y.; Feng, X. R.; Yu, S. H.; Seok, J.; Muller, D. A.; Abruña, H. D. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries. J. Mater. Chem. A 2019, 7, 21128–21139.

[124]

Sun, W. W.; Liu, S. K.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hong, X. B.; Xie, K.; Ma, Z. Y.; Zheng, C. M.; Xiong, S. Z. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205471.

[125]

Yuan, Q.; Chen, Y. X.; Li, A.; Li, Y. X.; Chen, X. H.; Jia, M. Q.; Song, H. H. Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery. Appl. Surf. Sci. 2020, 508, 145286.

[126]

Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. G.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

[127]

Wu, Q. P.; Yao, Z. G.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 2020, 14, 3365–3377.

[128]

Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Wu, Z. Y.; Zeng, P.; Huang, C.; Wang, Y. MoS2-coated n-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustainable Chem. Eng. 2018, 6, 16828–16837.

[129]

Ren, J.; Zhou, Y. B.; Xia, L.; Zheng, Q. J.; Liao, J.; Long, E. Y.; Xie, F. Y.; Xu, C. G.; Lin, D. M. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 13835–13847.

[130]

Zhang, Y. L.; Lin, Y. X.; He, L. F.; Murugesan, V.; Pawar, G.; Sivakumar, B. M.; Ding, H. P.; Ding, D.; Liaw, B.; Dufek, E. J. et al. Dual functional Ni3S2@Ni core–shell nanoparticles decorating nanoporous carbon as cathode scaffolds for lithium-sulfur battery with lean electrolytes. ACS Appl. Energy Mater. 2020, 3, 4173–4179.

[131]

Li, W. D.; Gong, Z. J.; Yan, X. J.; Wang, D. Z.; Liu, J.; Guo, X. S.; Zhang, Z. H.; Li, G. C. In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 433–442.

[132]

Ulissi, U.; Ito, S.; Hosseini, S. M.; Varzi, A.; Aihara, Y.; Passerini, S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv. Energy Mater. 2018, 8, 1801462.

[133]

Liang, Y. Z.; Ma, C.; Wang, Y. Q.; Yu, H. L.; Shen, X. Q.; Yao, S. S.; Li, T. B.; Qin, S. B. Cubic pyrite nickel sulfide nanospheres decorated with Ketjen black@sulfur composite for promoting polysulfides redox kinetics in lithium-sulfur batteries. J. Alloys Compd. 2022, 907, 164396.

[134]

Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82.

[135]

Jin, X. Z.; Gao, S.; Wu, A. M.; Zhao, J. J.; Huang, H.; Cao, G. Z. Dual-constrained sulfur in FeS2@C nanostructured lithium-sulfide batteries. ACS Appl. Energy Mater. 2020, 3, 10950–10960.

[136]

Li, R. R.; Shen, H. J.; Pervaiz, E.; Yang, M. H. Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium-sulfur batteries. Chem. Eng. J. 2021, 404, 126462.

[137]

Han, P.; Chung, S. H.; Manthiram, A. Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 23122–23130.

[138]

Moorthy, B.; Kwon, S.; Kim, J. H.; Ragupathy, P.; Lee, H. M.; Kim, D. K. Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries. Nanoscale Horiz. 2019, 4, 214–222.

[139]

Liu, J. B.; Qiao, Z. S.; Xie, Q. S.; Peng, D. L.; Xie, R. J. Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 15226–15236.

[140]

Dong, C. X.; Zhou, C.; Li, Y.; Yu, Y. K.; Zhao, T. H.; Zhang, G.; Chen, X. H.; Yan, K. J.; Mai, L. Q.; Xu, X. Ni single atoms on MoS2 nanosheets enabling enhanced kinetics of Li-S batteries. Small 2023, 19, 2205855.

[141]

Huang, S. Z.; Wang, Y.; Hu, J. P.; von Lim, Y.; Kong, D. Z.; Guo, L.; Kou, Z. K.; Chen, Y. X.; Yang, H. Y. In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. NPG Asia Mater. 2019, 11, 55

[142]

Wang, J. Y.; Zhou, L.; Guo, D. Y.; Wang, X. Y.; Fang, G. Y.; Chen, X. A.; Wang, S. Flower-like NiS2/WS2 heterojunction as polysulfide/sulfide bidirectional catalytic layer for high-performance lithium-sulfur batteries. Small 2023, 19, 2206926.

[143]

Jiang, Y. T.; Liang, P.; Tang, M. J.; Sun, S. P.; Min, H. H.; Han, J. C.; Shen, X. D.; Yang, H.; Chao, D. L.; Wang, J. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li-S batteries. J. Mater. Chem. A 2022, 10, 22080–22092.

[144]

Zhou, C.; Li, M.; Hu, N. T.; Yang, J. H.; Li, H.; Yan, J. W.; Lei, P. Y.; Zhuang, Y. P.; Guo, S. W. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li-S batteries. Adv. Funct. Mater. 2022, 32, 2204635.

[145]

Wei, N.; Cai, J. S.; Wang, R. C.; Wang, M. L.; Lv, W.; Ci, H. N.; Sun, J. Y.; Liu, Z. F. Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium-sulfur batteries. Nano Energy 2019, 66, 104190.

[146]

Zhang, J. Y.; Xu, G. B.; Zhang, Q.; Li, X.; Yang, Y.; Yang, L. W.; Huang, J. Y.; Zhou, G. M. Mo-O-C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium-sulfur batteries. Adv. Sci. 2022, 9, 2201579.

[147]

Tan, L.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wang, J. X. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 3707–3713.

[148]

Guo, J.; Jiang, H. L.; Li, X. C.; Chu, Z.; Zheng, W. J.; Dai, Y.; Jiang, X. B.; Wu, X. M.; He, G. H. Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 358–367.

[149]

Al-Tahan, M. A.; Dong, Y. T.; Shrshr, A. E.; Liu, X. B.; Zhang, R.; Guan, H.; Kang, X. Y.; Wei, R. P.; Zhang, J. M. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 2022, 609, 235–248.

[150]

Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward high-performance Li-S batteries. J. Mater. Chem. A 2018, 6, 11694–11699.

[151]

Zhang, W. Y.; Hong, D. H.; Su, Z.; Yi, S.; Tian, L. Y.; Niu, B.; Zhang, Y. Y.; Long, D. H. Tailored ZnO–ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li-S batteries. Energy Storage Mater. 2022, 53, 404–414.

[152]

Yao, S. S.; Cui, J.; Huang, J. Q.; Lu, Z. H.; Deng, Y.; Chong, W. G.; Wu, J. X.; Ul Haq, M. I.; Ciucci, F.; Kim, J. K. Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. Adv. Energy Mater. 2018, 8, 1800710.

[153]

Geng, M. Z.; Yang, H. Q.; Shang, C. Q. The multi-functional effects of CuS as modifier to fabricate efficient interlayer for Li-S batteries. Adv. Sci. 2022, 9, 2204561.

[154]
Li, F.; Qian, X. Y.; Jin, L. N. MOF-derived MnS/N-C@CNT composites as separator coating materials for long-cycling Li-S batteries. ACS Sustainable Chem. Eng. 2021 , 9, 15469‒15477.
[155]

Wang, J. L.; Cai, W.; Mu, X. W.; Han, L. F.; Wu, N.; Liao, C.; Kan, Y. C.; Hu, Y. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4865–4877.

[156]

Zhen, M. M.; Zuo, X. T.; Wang, J.; Wang, C. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries. Nano Res. 2019, 12, 1017–1024.

[157]

Gong, Y. Y.; Wang, Y. N.; Fang, Z. M.; Zhao, S. S.; He, Y. S.; Zhang, W. M.; Mu, J. L.; Zhang, L. P.; Ma, Z. F. Constructing a catalytic reservoir using cobalt nanoparticles-MoS2@nitrogen doped carbon nanotubes on the separator to immobilize polysulfides and accelerate their conversion for lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 136943.

[158]

Cheng, P.; Shi, L. L.; Li, W. Q.; Fang, X. R.; Cao, D. L.; Zhao, Y. G.; Cao, P.; Liu, D. Q.; He, D. Y. Efficient regulation of polysulfides by MoS2/MoO3 heterostructures for high-performance Li-S batteries. Small 2023, 19, 2206083.

[159]

Zhang, Y. Z.; Xu, G. X.; Kang, Q.; Zhan, L.; Tang, W. Q.; Yu, Y. X.; Shen, K. L.; Wang, H. C.; Chu, X.; Wang, J. Y. et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 16812–16820.

[160]

Yang, J. Y.; Yu, L. H.; Zheng, B. B.; Li, N. R.; Xi, J. Y.; Qiu, X. P. Carbon microtube textile with MoS2 nanosheets grown on both outer and inner walls as multifunctional interlayer for lithium-sulfur batteries. Adv. Sci. 2020, 7, 1903260.

[161]

Yang, Y. B.; Wang, S. X.; Zhang, L. T.; Deng, Y. F.; Xu, H.; Qin, Q. S.; Chen, G. H. CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem. Eng. J. 2019, 369, 77–86.

[162]

Xu, J.; Yang, L. K.; Cao, S. F.; Wang, J. W.; Ma, Y. M.; Zhang, J. J.; Lu, X. Q. Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 2021, 8, 2101019.

[163]

Huang, Y. G.; Lv, D. J.; Zhang, Z. J.; Ding, Y. J.; Lai, F. Y.; Wu, Q.; Wang, H. Q.; Li, Q. Y.; Cai, Y. Z.; Ma, Z. L. Co-Fe bimetallic sulfide with robust chemical adsorption and catalytic activity for polysulfides in lithium-sulfur batteries. Chem. Eng. J. 2020, 387, 124122.

[164]

Li, Z.; Zhang, F.; Cao, T.; Tang, L. B.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator. Adv. Funct. Mater. 2020, 30, 2006297.

[165]

Liu, Z. H.; Mao, X. Q.; Wang, S.; Li, T. T.; Luo, Y. Q.; Xing, J. Y.; Fei, B.; Pan, Z. Y.; Tian, Z. Q.; Shen, P. K. A bifunctional interlayer fabricated by FeS2-embedded N-doped carbon nanocages with efficient polysulfide trapping-catalyzing capability for robust Li-S batteries. Chem. Eng. J. 2022, 447, 137433.

[166]

Zuo, X. T.; Zhen, M. M.; Liu, D. P.; Yu, H. H.; Feng, X. L.; Zhou, W.; Wang, H.; Zhang, Y. A multifunctional catalytic interlayer for propelling solid-solid conversion kinetics of Li2S2 to Li2S in lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2214206.

[167]
Wang, J. F.; Li, J. C@MoS2 modified separator as efficient trapper and catalysis for promoting polysulfide conversion in Li-S battery. J. Colloid Interface Sci. 2022 , 616, 298‒303.
[168]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Shi, X. S.; Qiao, S. M.; Wang, Q.; Zhang, Q.; Hao, C.; Xu, H. et al. Competing reduction induced homogeneous oxygen doping to unlock MoS2 basal planes for faster polysulfides conversion. J. Energy Chem. 2022, 73, 26–34.

[169]

Zhen, M. M.; Guo, S. Q.; Shen, B. X. Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 13318–13327.

[170]

Wu, J. Y.; Li, X. W.; Zeng, H. X.; Xue, Y.; Chen, F. Y.; Xue, Z. G.; Ye, Y. S.; Xie, X. L. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 7897–7906.

[171]

Xian, C. X.; Jing, P.; Pu, X. H.; Wang, G. C.; Wang, Q.; Wu, H.; Zhang, Y. A trifunctional separator based on a blockage-adsorption-catalysis synergistic effect for Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 47599–47611.

[172]

Li, Z.; Zhang, F.; Tang, L. B.; Tao, Y. Y.; Chen, H.; Pu, X. M.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 2020, 390, 124653.

[173]

Wang, X. X.; Deng, N. P.; Ju, J. G.; Wang, G.; Wei, L. Y.; Gao, H. J.; Cheng, B. W.; Kang, W. M. Flower-like heterostructured MoP–MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li-S batteries. J. Memb. Sci. 2022, 642, 120003.

[174]

Zhang, J. Z.; Zhang, J.; Liu, K. L.; Yang, T.; Tian, J. H.; Wang, C. Y.; Chen, M. M.; Wang, X. L. Abundant defects-induced interfaces enabling effective anchoring for polysulfides and enhanced kinetics in lean electrolyte lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 46767–46775.

[175]

Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS–SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity Mediator toward High-Rate and Long-Life Lithium-Sulfur Batteries. ACS Nano 2021, 15, 7114–7130.

[176]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021, 15, 20478–20488.

[177]

Xu, Z.; Wang, Z.; Wang, M. R.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Li, J. Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chem. Eng. J. 2021, 422, 130049.

[178]
Jin, L. N.; Chen, J. Y.; Fu, Z. H.; Qian, X. Y.; Cheng, J.; Hao, Q. Y.; Zhang, K. ZIF-8/ZIF-67 derived ZnS@Co-N-C hollow core-shell composite and its application in lithium-sulfur battery. Sustainable Mater. Technol. 2023 , 35, e00571.
[179]

Ali, S.; Waqas, M.; Jing, X. P.; Chen, N.; Chen, D. J.; Xiong, J.; He, W. D. Carbon-tungsten disulfide composite bilayer separator for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 39417–39421.

[180]

Liu, X. Y.; Wang, S. X.; Duan, H. H.; Deng, Y. F.; Chen, G. H. A thin and multifunctional CoS@g-C3N4/Ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 608, 470–481.

[181]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[182]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[183]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[184]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[185]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[186]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

[187]

Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

[188]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[189]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[190]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[191]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[192]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

Nano Research
Pages 2574-2591
Cite this article:
Zhu G, Wu Q, Zhang X, et al. Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries. Nano Research, 2024, 17(4): 2574-2591. https://doi.org/10.1007/s12274-023-6227-4
Topics:

591

Views

15

Crossref

17

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 31 August 2023
Revised: 18 September 2023
Accepted: 20 September 2023
Published: 03 November 2023
© Tsinghua University Press 2023
Return