AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Co2P/CoP heterostructures with significantly enhanced performance in electrocatalytic hydrogen evolution reaction: Synthesis and electron redistribution mechanism

Baoshan LiuBoan ZhongFeng LiJing Liu( )Liping ZhaoPeng Zhang( )Lian Gao
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

The effective promotion of the electrons transferring and accumulation for heterostructures activate the P site of Co2P/CoP, leading to a multiple sites route mechanism for enhanced hydrogen evolution reaction.

Abstract

Heterostructures are often constructed to modulate the electronic states of the two catalysts, achieving high-performance in alkaline hydrogen evolution reaction (HER). Various mechanisms have been proposed for the heterostructural catalysts, which however awaits further approvement. Herein, a heterostructure composed of Co2P and CoP was successfully prepared with significantly enhanced HER catalytic activity relative to the endmembers. The ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) revealed the effective promotion of the self-driven transferring of electrons from CoP to Co2P and the accumulation of electrons on the P sites in Co2P due to the strong electronic coupling of built-in electric field in the Co2P/CoP interface. In situ electrochemical impedance spectroscopy (EIS) and poison experiments confirmed the Heyrovsky step of H* intermediate depleting on electronegative P sites and contributions of both metal and P to the reactivity in the Co2P/CoP. Density functional theory (DFT) calculations clarify that the electronic structure at interface of the heterojunction significantly weakens the hydrogen adsorption free energy (ΔGH* ads) of P site in Co2P/CoP to near zero. We also propose an electronic redistribution strategy for heterostructures that activates the multiple routes mechanism and production of more active sites. The working mechanism is expected to be further extended to other transition metal compounds for efficient HER activity.

Electronic Supplementary Material

Download File(s)
12274_2023_6228_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

[2]

Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

[3]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[4]

Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

[5]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[6]

Thalluri, S. M.; Bai, L. C.; Lv, C. C.; Huang, Z. P.; Hu, X. L.; Liu, L. F. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv. Sci. 2020, 7, 1902102.

[7]

Sun, X. J.; Ding, R. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal. Sci. Technol. 2020, 10, 1567–1581.

[8]

Herraiz-Cardona, I.; González-Buch, C.; Valero-Vidal, C.; Ortega, E.; Pérez-Herranz, V. Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media. J. Power Sources 2013, 240, 698–704.

[9]

Li, F.; Zheng, W. S.; Liu, J.; Zhao, L. P.; Janackovic, D.; Qiu, Y.; Song, X. F.; Zhang, P.; Gao, L. Enhancing the long-term photoelectrochemical performance of TiO2/Si photocathodes by coating of Ti-doped mesoporous hematite. ACS Appl. Energy Mater. 2021, 4, 7882–7890.

[10]

Singh, T. I.; Rajeshkhanna, G.; Pan, U. N.; Kshetri, T.; Lin, H.; Kim, N. H.; Lee, J. H. Alkaline water splitting enhancement by MOF-derived Fe-Co-oxide/Co@NC-mNS heterostructure: Boosting OER and HER through defect engineering and in situ oxidation. Small 2021, 17, 2101312.

[11]

Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

[12]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

[13]

Zhang, P. F.; Liu, Y. D.; Liang, T. T.; Ang, E. H.; Zhang, X.; Ma, F.; Dai, Z. F. Nitrogen-doped carbon wrapped Co-Mo2C dual Mott–Schottky nanosheets with large porosity for efficient water electrolysis. Appl. Catal. B: Environ. 2021, 284, 119738.

[14]

Li, R. Q.; Wan, X. Y.; Chen, B. L.; Cao, R. Y.; Ji, Q. H.; Deng, J.; Qu, K. G.; Wang, X. B.; Zhu, Y. C. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 2021, 409, 128240.

[15]

Xiao, Y. T.; Wang, Z. Q.; Li, L. F.; Gu, Q.; Xu, M.; Zhu, L.; Fu, X. L. Ball-milled Ni2P/g-C3N4 for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy 2023, 48, 15460–15472.

[16]

Yang, L.; Huang, L. T.; Yao, Y. H.; Jiao, L. F. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B: Environ. 2021, 282, 119584.

[17]

Shi, Y. M.; Li, M. Y.; Yu, Y. F.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582.

[18]

Xu, Y. L.; Wang, R.; Zheng, Y. X.; Zhang, L. H.; Jiao, T. F.; Peng, Q. M.; Liu, Z. F. Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl. Surf. Sci. 2020, 509, 145383.

[19]

Han, Q. L.; Luo, Y. H.; Liu, G. H.; Wang, Y. J.; Li, J. D.; Chen, Z. W. Comparative study on the distinct activity for NiFe-based phosphide and sulfide pre-electrocatalysts towards hydrogen evolution reaction. J. Catal. 2022, 413, 425–433.

[20]

Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

[21]

Tan, J. Y.; Li, S. S.; Liu, B. L.; Cheng, H. M. Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures. Small Struct. 2021, 2, 2170001.

[22]

Cheng, F. P.; Peng, X. Y.; Hu, L. Z.; Yang, B.; Li, Z. J.; Dong, C. L.; Chen, J. L.; Hsu, L. C.; Lei, L. C.; Zheng, Q. et al. Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 2022, 13, 6486.

[23]

Jin, Z. Y.; Li, P. P.; Xiao, D. Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chem. 2016, 18, 1459–1464.

[24]

Gong, W. J.; Zhang, H. Y.; Yang, L.; Yang, Y.; Wang, J. S.; Liang, H. Core@shell MOFs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. J. Ind. Eng. Chem. 2022, 106, 492–502.

[25]

Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

[26]

Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

[27]

Zhao, T. W.; Wang, S. H.; Li, Y. B.; Jia, C.; Su, Z.; Hao, D.; Ni, B. J.; Zhang, Q.; Zhao, C. Heterostructured V-doped Ni2P/Ni12P5 electrocatalysts for hydrogen evolution in anion exchange membrane water electrolyzers. Small 2022, 18, 2204758.

[28]

Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y. E.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiO x nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

[29]

Zhou, Q.; Liao, L. L.; Bian, Q. H.; Yu, F.; Li, D. Y.; Zeng, J. S.; Zhang, L.; Wang, H.; Tang, D. S.; Zhou, H. Q. et al. Engineering in-plane nickel phosphide heterointerfaces with interfacial sp H-P hybridization for highly efficient and durable hydrogen evolution at 2 A·cm−2. Small 2022, 18, 2105642.

[30]

Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.

[31]

Liu, L. Z.; Zhang, Y. H.; Huang, H. W. Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction. Solar RRL 2021, 5, 2000430.

[32]

Sun, L.; Xu, H. Z.; Cheng, Z. Y.; Zheng, D. H.; Zhou, Q. N.; Yang, S. K.; Lin, J. J. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chem. Eng. J. 2022, 443, 136348.

[33]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[34]

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

[35]

Men, Y.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019, 9, 3744–3752.

[36]

Li, S. S.; Wang, L.; Su, H.; Hong, A. N.; Wang, Y. X.; Yang, H. J.; Ge, L.; Song, W. Y.; Liu, J.; Ma, T. Y. et al. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2200733.

[37]

Zheng, F. Q.; Zhang, Z. W.; Zhang, C. M.; Chen, W. Advanced electrocatalysts based on metal-organic frameworks. ACS Omega 2020, 5, 2495–2502.

[38]

Mo, Q. J.; Zhang, W. B.; He, L. Q.; Yu, X.; Gao, Q. S. Bimetallic Ni2− x Co x P/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Appl. Catal. B: Environ. 2019, 244, 620–627.

[39]

Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.

[40]

Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

[41]

Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[44]

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kim, H.; Yoo, J. M.; Lee, K. S.; Kim, T.; Shin, H.; Sinha, A. K.; Kwon, S. G. et al. Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674.

[45]

Yang, H. Q.; Wang, B. D.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. Mott–Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

[46]

Xu, R. R.; Jiang, T. F.; Fu, Z.; Cheng, N. Y.; Zhang, X. X.; Zhu, K.; Xue, H. G.; Wang, W. J.; Tian, J. Q.; Chen, P. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution. Nano Energy 2020, 78, 105347.

[47]

Tian, L. H.; Yan, X. D.; Chen, X. J.; Liu, L.; Chen, X. B. One-pot, large-scale, simple synthesis of Co x P nanocatalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 2016, 4, 13011–13016.

[48]

Diao, F. Y.; Huang, W.; Ctistis, G.; Wackerbarth, H.; Yang, Y.; Si, P. C.; Zhang, J. D.; Xiao, X. X.; Engelbrekt, C. Bifunctional and self-supported NiFeP-layer-coated NiP rods for electrochemical water splitting in alkaline solution. ACS Appl. Mater. Interfaces 2021, 13, 23702–23713.

[49]

Ding, X. D.; Huang, H. T.; Wan, Q.; Guan, X.; Fang, Y. X.; Lin, S.; Chen, D. Y.; Xie, Z. L. Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. J. Energy Chem. 2021, 62, 415–422.

[50]

Liu, G.; Li, N.; Zhao, Y.; Yao, R.; Wang, M. H.; He, D. Y.; Li, J. P. Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. Electrochim. Acta 2018, 283, 1490–1497.

[51]

Cheng, M.; Fan, H. S.; Xu, Y. Y.; Wang, R. M.; Zhang, X. X. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale 2017, 9, 14162–14171.

[52]

Zhou, Q. X.; Sun, R. X.; Ren, Y. P.; Tian, R.; Yang, J.; Pang, H.; Huang, K.; Tian, X. L.; Xu, L.; Tang, Y. W. Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution. Carbon Energy 2023, 5, e273.

[53]

Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 259–267.

[54]

Qin, M. L.; Chen, L. L.; Zhang, H. M.; Humayun, M.; Fu, Y. J.; Xu, X. F.; Xue, X. Y.; Wang, C. D. Achieving highly efficient pH-universal hydrogen evolution by Mott–Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230.

[55]

Gu, C. J.; Zhou, G. Y.; Yang, J.; Pang, H.; Zhang, M. Y.; Zhao, Q.; Gu, X. F.; Tian, S.; Zhang, J. B.; Xu, L. et al. NiS/MoS2 Mott–Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chem. Eng. J. 2022, 443, 136321.

[56]

Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 2020, 262, 118245.

[57]

Liu, H. T.; Guan, J. Y.; Yang, S. X.; Yu, Y. H.; Shao, R.; Zhang, Z. P.; Dou, M. L.; Wang, F.; Xu, Q. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, 2003649.

[58]

Xu, Y. C.; Wei, S. T.; Gan, L. F.; Zhang, L.; Wang, F.; Wu, Q.; Cui, X. Q.; Zheng, W. T. Amorphous carbon interconnected ultrafine CoMnP with enhanced Co electron delocalization yields Pt-like activity for alkaline water electrolysis. Adv. Funct. Mater. 2022, 32, 2112623.

[59]

Wang, L.; Wu, H. J.; Xi, S. B.; Chua, S. T.; Wang, F. H.; Pennycook, S. J.; Yu, Z. G.; Du, Y. H.; Xue, J. M. Nitrogen-doped cobalt phosphide for enhanced hydrogen evolution activity. ACS Appl. Mater. Interfaces 2019, 11, 17359–17367.

[60]

Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott–Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

[61]

Liu, Y. H.; Ding, J.; Li, F. H.; Su, X. Z.; Zhang, Q. T.; Guan, G. J.; Hu, F. X.; Zhang, J. C.; Wang, Q. L.; Jiang, Y. C. et al. Modulating hydrogen adsorption via charge transfer at the semiconductor-metal heterointerface for highly efficient hydrogen evolution catalysis. Adv. Mater. 2023, 35, 2207114.

[62]

Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

[63]

Cui, Z. P.; Sheng, W. C. Thoughts about choosing a proper counter electrode. ACS Catal. 2023, 13, 2534–2541.

[64]

Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

[65]

Yan, P.; Yang, T.; Lin, M. X.; Guo, Y. N.; Qi, Z. P.; Luo, Q. Q.; Yu, X. Y. “One stone five birds” plasma activation strategy synergistic with ru single atoms doping boosting the hydrogen evolution performance of metal hydroxide. Adv. Funct. Mater. 2023, 33, 2301343

[66]

Sung, Y. E.; Chrzanowski, W.; Zolfaghari, A.; Jerkiewicz, G.; Wieckowski, A. Structure of chemisorbed sulfur on a Pt(111) electrode. J. Am. Chem. Soc. 1997, 119, 194–200.

Nano Research
Pages 12830-12839
Cite this article:
Liu B, Zhong B, Li F, et al. Co2P/CoP heterostructures with significantly enhanced performance in electrocatalytic hydrogen evolution reaction: Synthesis and electron redistribution mechanism. Nano Research, 2023, 16(11): 12830-12839. https://doi.org/10.1007/s12274-023-6228-3
Topics:

968

Views

18

Crossref

15

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 20 July 2023
Revised: 20 September 2023
Accepted: 21 September 2023
Published: 31 October 2023
© Tsinghua University Press 2023
Return