AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Key role of electron accessibility at the noble metal-free catalytic interface in hydrogen evolution reaction

Dongchen Han1,2,3,4Nanxing Gao1,2,3,4Yuyi Chu1,2,3,4Zhaoping Shi1,2,3,4Ying Wang5( )Junjie Ge2( )Meiling Xiao1,2,3,4( )Changpeng Liu1,2,3,4( )Wei Xing1,2,3,4( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun 130022, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

We demonstrate the interrelation of conductivity and hydrogen evolution reaction (HER) apparent activity of catalysts, and elucidate the key role of conductivity of catalyst towards water electrolysis. We propose a mechanism to evaluate overall catalytic activity based on electron accessibility and ΔGH from the view of dynamics and thermodynamics.

Abstract

The reactant concentration at the catalytic interface holds the key to the activity of electrocatalytic hydrogen evolution reaction (HER), mainly referring to the capacity of adsorbing hydrogen and electron accessibility. With hydrogen adsorption free energy (ΔGH) as a reactivity descriptor, the volcano curve based on Sabatier principle is established to evaluate the hydrogen evolution activity of catalysts. However, the role of electron as reactant received insufficient attention, especially for noble metal-free compound catalysts with poor conductivity, leading to cognitive gap between electronic conductivity and apparent catalytic activity. Herein we successfully construct a series of catalyst models with gradient conductivities by regulating molybdenum disulfide (MoS2) electronic bandgap via a simple solvothermal method. We demonstrate that the conductivity of catalysts greatly affects the overall catalytic activity. We further elucidate the key role of intrinsic conductivity of catalyst towards water electrolysis, mainly concentrating on the electron transport from electrode to catalyst, the electron accumulation process at the catalyst layer, and the charge transfer progress from catalyst to reactant. Theoretical and experimental evidence demonstrates that, with the enhancement in electron accessibility at the catalytic interface, the dominant parameter governing overall HER activity gradually converts from electron accessibility to combination of electron accessibility and hydrogen adsorbing energy. Our results provide the insight from various perspective for developing noble metal-free catalysts in electrocatalysis beyond HER.

Electronic Supplementary Material

Download File(s)
12274_2023_6229_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

[2]

Chen, L. L.; Huang, Y. C.; Ding, Y. P.; Yu, P.; Huang, F.; Zhou, W. B.; Wang, L. M.; Jiang, Y. Y.; Li, H. T.; Cai, H. Q. et al. Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 2023, 16, 12186–12195

[3]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85

[4]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[5]

Resasco, J.; Abild-Pedersen, F.; Hahn, C.; Bao, Z. N.; Koper, M. T. M.; Jaramillo, T. F. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 2022, 5, 374–381.

[6]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[7]

Han, X. X.; Tong, X. L.; Liu, X. C.; Chen, A.; Wen, X. D.; Yang, N. J.; Guo, X. Y. Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 2018, 8, 1828–1836.

[8]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[9]

Yang, J.; Mohmad, A. R.; Wang, Y.; Fullon, R.; Song, X. J.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E. J. G.; Shin, H. S. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309–1314.

[10]

Zheng, Z. L.; Yu, L.; Gao, M.; Chen, X. Y.; Zhou, W.; Ma, C.; Wu, L. H.; Zhu, J. F.; Meng, X. Y.; Hu, J. T. et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 2020, 11, 3315.

[11]

Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

[12]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[13]

Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90–204.

[14]

Han, D. C.; Luo, Z. Y.; Li, Y.; Gao, N. X.; Ge, J. J.; Liu, C. P.; Xing, W. Synergistic engineering of MoS2 via dual-metal doping strategy towards hydrogen evolution reaction. Appl. Surf. Sci. 2020, 529, 147117.

[15]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[16]

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

[17]

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

[18]

Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

[19]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[20]

Kang, Q.; Zheng, Z.; Zu, Y. F.; Liao, Q.; Bi, P. Q.; Zhang, S. Q.; Yang, Y.; Xu, B. W.; Hou, J. H. N-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells. Joule 2021, 5, 646–658

[21]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[22]

Park, S.; Kim, C.; Park, S. O.; Oh, N. K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y. J.; Lim, H. Y.; Kwak, S. K. et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, 2001889.

[23]

Luo, M. C.; Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 2022, 5, 615–623.

[24]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[25]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[26]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

[27]

Siao, M. D.; Shen, W. C.; Chen, R. S.; Chang, Z. W.; Shih, M. C.; Chiu, Y. P.; Cheng, C. M. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 2018, 9, 1442.

[28]

Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

[29]

Dai, H. Y.; Yang, H. M.; Liu, X.; Song, X. L.; Liang, Z. H. Preparation and electrochemical evaluation of MoS2/graphene quantum dots as a catalyst for hydrogen evolution in microbial electrolysis cell. J. Electrochem. 2021, 27, 429–438.

[30]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[31]

Wu, W. Z.; Niu, C. Y.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew. Chem., Int. Ed. 2019, 58, 2029–2033.

[32]

Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.

[33]

Fashandi, H.; Dahlqvist, M.; Lu, J.; Palisaitis, J.; Simak, S. I.; Abrikosov, I. A.; Rosen, J.; Hultman, L.; Andersson, M.; Lloyd Spetz, A. et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable ohmic contacts to SiC. Nat. Mater. 2017, 16, 814–818.

[34]

Euvrard, J.; Yan, Y. F.; Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 2021, 6, 531–549.

[35]

Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584.

[36]

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[37]

Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

[38]

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

[39]

Zeng, M. Q.; Liu, J. X.; Zhou, L.; Mendes, R. G.; Dong, Y. Q.; Zhang, M. Y.; Cui, Z. H.; Cai, Z. H.; Zhang, Z.; Zhu, D. M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 2020, 19, 528–533.

[40]

Liu, C.; Kong, D. S.; Hsu, P. C.; Yuan, H. T.; Lee, H. W.; Liu, Y. Y.; Wang, H. T.; Wang, S.; Yan, K.; Lin, D. C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 2016, 11, 1098–1104.

[41]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[42]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 364.

[43]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[44]

Fang, Y. Q.; Hu, X. Z.; Zhao, W.; Pan, J.; Wang, D.; Bu, K. J.; Mao, Y.; Chu, S. F.; Liu, P.; Zhai, T. Y. et al. Structural determination and nonlinear optical properties of new 1T'''-type MoS2 compound. J. Am. Chem. Soc. 2019, 141, 790–793.

[45]

Liu, M. J.; Hybertsen, M. S.; Wu, Q. A physical model for understanding the activation of MoS2 basal-plane sulfur atoms for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 132, 14945–14951.

[46]

Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

[47]

Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

[48]

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

[49]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[50]

Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

[51]

Oelßner, W.; Berthold, F.; Guth, U. The iR drop-well-known but often underestimated in electrochemical polarization measurements and corrosion testing. Mater. Corros. 2006, 57, 455–466.

Nano Research
Pages 2538-2545
Cite this article:
Han D, Gao N, Chu Y, et al. Key role of electron accessibility at the noble metal-free catalytic interface in hydrogen evolution reaction. Nano Research, 2024, 17(4): 2538-2545. https://doi.org/10.1007/s12274-023-6229-2
Topics:

646

Views

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 July 2023
Revised: 18 September 2023
Accepted: 24 September 2023
Published: 17 November 2023
© Tsinghua University Press 2023
Return