AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance

Jiaen Wang1Tianliang Song1Wei Ming1Moxi Yele1Longfu Chen1Hao Zhang1Xiaojuan Zhang2( )Benliang Liang1( )Guangsheng Wang3
School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Even though the functional filler MXene contents are as high as 60 wt.% and 70 wt.%, the strain-to-failure of the films could reach astonishing values of 18.34% ± 1.86% and 14.43% ± 1.26%, respectively, so the films can also withstand double folding and vigorous rubbing without damage, which could better adapt to a harsh application environment, at the same time, the corresponding electromagnetic interference (EMI) shielding effectiveness (SE) values could reach 45 and 52.15 dB. Inspired by nacre, the three-dimensional (3D) interconnected aramid nanofiber (ANF) networks between adjacent layered MXene give MXene/ANF composite films toughness and functional unity in the presence of high-functional fillers, which means this work provides a convenient way to prepare other high functional filler composite films with excellent mechanical performance.

Abstract

The high power density and intelligence of next-generation flexible electronic devices bring many challenges to fabricate flexible composite films with electromagnetic interference (EMI) shielding effectiveness (SE) property and excellent toughness via a simple method. Herein, inspired by the layered structure and biopolymer matrix networks in natural nacre, nacre-like layered Ti3C2TX (MXene)/aramid nanofiber (ANF) films were fabricated through sol-gel, vacuum-assisted filtration, and hot-pressing. Three-dimensional (3D) interconnected aramid nanofibers networks between adjacent layered MXene result in an ultralong strain-to-failure of the film. Even though the functional filler MXene contents are as high as 60 wt.% and 70 wt.%, the strain-to-failure of the films could reach astonishing values of 18.34% ± 1.86% and 14.43% ± 1.26%, respectively. And the tensile strength could maintain about 85 MPa. Excitingly, with such a high filler, the film can also withstand double folding and vigorous rubbing without damage, which could better adapt to a harsh application environment. The result means that this work provides a convenient way to prepare other high functional filler composite films with excellent mechanical performance. The EMI SE values could reach 45 and 52.15 dB at 60 wt.% and 70 wt.% MXene in 8.2–12.4 GHz. Meanwhile, the films have prominent Joule heating properties, high sensitivity (< 15 s), small voltage operation (0.5 V), and high operation constancy (1300 s). Therefore, nacre-inspired MXene/ANF composite films in this work have ability to apply in many areas including communication technology, military, and aerospace.

Electronic Supplementary Material

Video
12274_2023_6232_MOESM2_ESM.mp4
Download File(s)
12274_2023_6232_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Yang, Z. Q.; You, W. B.; Xiong, X. H.; Zhang, R. X.; Wu, Z. C.; Zhao, B.; Wang, M.; Liu, X. H.; Zhang, X. F.; Che, R. C. Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 32369–32378.

[2]

Wang, L.; Huang, M. Q.; Yu, X. F.; You, W. B.; Zhao, B.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 131, 231–239.

[3]

Zhang, Z. W.; Li, Z.; Xia, L.; Wang, R. F.; Cao, Y. S.; Cheng, Z.; Huang, Y. Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges. Nano Res. 2023, 16, 88–100.

[4]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407

[5]

Huang, M. Q.; Wang, L.; Li, X.; Wu, Z. C.; Zhao, B.; Pei, K.; Liu, X. H.; Zhang, X. F.; Che, R. C. Magnetic interacted interaction effect in MXene skeleton: Enhanced thermal-generation for electromagnetic interference shielding. Small 2022, 18, 2201587.

[6]

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

[7]

He, X.; Peng, H. L.; Xiong, Z. Q.; Nie, X. L.; Wang, D.; Wang, G. S.; Liu, C. B. A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 2022, 198, 195–206.

[8]

Cheng, Z.; Wang, R. F.; Wang, Y.; Cao, Y. S.; Shen, Y. X.; Huang, Y.; Chen, Y. S. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137.

[9]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[10]

Qi, C. Z.; Wu, X. Y.; Liu, J.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 2023, 135, 213–220.

[11]

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

[12]

Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

[13]

Huang, M. Q.; Wang, L.; Zhao, B.; Chen, G. Y.; Che, R. C. Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 2023, 138, 149–156.

[14]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[15]

Zhang, S.; Wu, J. T.; Liu, J. G.; Yang, Z.; Wang, G. S. Ti3C2T x MXene nanosheets sandwiched between Ag nanowire-polyimide fiber mats for electromagnetic interference shielding. ACS Appl. Nano Mater. 2021, 4, 13976–13985.

[16]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[17]

Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 2022, 224, 109445.

[18]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x -(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[19]

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2T x MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

[20]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093

[21]
Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenes-based optical functional materials. Advanced Photonics Research, in press, https://doi.org/10.1002/adpr.202300224.
[22]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[23]

Sang, M.; Liu, S. A.; Wu, J. P.; Wang, X. Y.; Zhang, J. S.; Xu, Y. Q.; Wang, Y.; Li, J.; Li, J.; Xuan, S. H. et al. Flexible and breathable 3D porous SSE/MXene foam towards impact/electromagnetic interference/bacteria multiple protection performance for intelligent wearable devices. Nano Res. 2023, 16, 10164–10174

[24]

Ye, L. X.; Liu, L. X.; Yin, G.; Liu, Y. F.; Deng, Z. M.; Qi, C. Z.; Zhang, H. B.; Yu, Z. Z. Highly conductive, hydrophobic, and acid/alkali-resistant MXene@PVDF hollow core–shell fibers for efficient electromagnetic interference shielding and Joule heating. Mater. Today Phys. 2023, 35, 101100.

[25]

Diao, J. L.; Yuan, J.; Cai, Z. H.; Xia, L.; Cheng, Z.; Liu, X. Y.; Ma, W. L.; Wang, S. F.; Huang, Y. High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 2022, 196, 243–252.

[26]

Tang, X. W.; Luo, J. T.; Hu, Z. W.; Lu, S. J.; Liu, X. Y.; Li, S. S.; Zhao, X.; Zhang, Z. H.; Lan, Q. Q.; Ma, P. M. et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 2023, 16, 1755–1763

[27]

Ma, W. L.; Chen, H. H.; Hou, S. Y.; Huang, Z. Y.; Huang, Y.; Xu, S. T.; Fan, F.; Chen, Y. S. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 2019, 11, 25369–25377.

[28]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206

[29]

Wen, C. Y.; Zhao, B.; Liu, Y. H.; Xu, C. Y.; Wu, Y. Y.; Cheng, Y. F.; Liu, J. W.; Liu, Y. X.; Yang, Y. X.; Pan, H. G. et al. Flexible MXene-based composite films for multi-spectra defense in radar, infrared, and visible light bands. Adv. Funct. Mater. 2023, 33, 2214223.

[30]

Cheng, Z.; Cao, Y. S.; Wang, R. F.; Liu, X. Y.; Fan, F.; Huang, Y. Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. J. Mater. Chem. A 2023, 11, 5593–5605

[31]

Deng, Z. M.; Li, L. L.; Tang, P. P.; Jiao, C. Y.; Yu, Z. Z.; Koo, C. M.; Zhang, H. B. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 2022, 16, 16976–16986.

[32]

Cao, Y.; Zeng, Z. H.; Huang, D. Y.; Chen, Y.; Zhang, L.; Sheng, X. X. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 2022, 15, 8524–8535.

[33]
Jiang, P. Z.; Deng, Z. M.; Min, P.; Ye, L. X.; Qi, C. Z.; Zhao, H. Y.; Liu, J.; Zhang, H. B.; Yu, Z. Z. Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Res. in press, https://doi.org/10.1007/s12274-023-6044-9.
[34]

Chen, M. J.; Li, L. L.; Deng, Z. M.; Min, P.; Yu, Z. Z.; Zhang, C. J.; Zhang, H. B. Two-dimensional Janus MXene inks for versatile functional coatings on arbitrary substrates. ACS Appl. Mater. Interfaces 2023, 15, 4591–4600.

[35]

Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.

[36]

Wan, S. J.; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

[37]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[38]

Liu, L. X.; Chen, W.; Zhang, H. B.; Ye, L. X.; Wang, Z. G.; Zhang, Y.; Min, P.; Yu, Z. Z. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 2022, 14, 111.

[39]

Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

[40]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[41]

Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2T x MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

[42]

Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manufactur. 2020, 135, 105927.

[43]

Xie, F.; Jia, F. F.; Zhuo, L. H.; Lu, Z. Q.; Si, L. M.; Huang, J. Z.; Zhang, M. Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391.

[44]

Liang, B. L.; Zhao, H. W.; Zhang, Q.; Fan, Y. Z.; Yue, Y. H.; Yin, P. G.; Guo, L. Ca2+ enhanced nacre-inspired montmorillonite-alginate film with superior mechanical, transparent, fire retardancy, and shape memory properties. ACS Appl. Mater. Interfaces 2016, 8, 28816–28823.

[45]

Li, H.; Dai, X. H.; Han, X. Y.; Wang, J. F. Molecular orientation-regulated bioinspired multilayer composites with largely enhanced mechanical properties. ACS Appl. Mater. Interfaces 2023, 15, 21467–21475.

[46]

Xiao, G.; Di, J. T.; Li, H.; Wang, J. F. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 2020, 189, 108021.

[47]

Zhou, T. X.; Zhao, C. Q.; Liu, Y. H.; Huang, J.; Zhou, H. S.; Nie, Z. D.; Fan, M.; Zhao, T. Y.; Cheng, Q. F.; Liu, M. J. Large-area ultrastrong and stiff layered MXene nanocomposites by shear-flow-induced alignment of nanosheets. ACS Nano 2022, 16, 12013–12023.

[48]

Li, H.; Teng, C.; Zhao, J. Z.; Wang, J. F. A scalable hydrogel processing route to high-strength, foldable clay-based artificial nacre. Compos. Sci. Technol. 2021, 201, 108543.

[49]

Meng, F. B.; Chen, Y.; Liu, W. H.; Zhang, L. K.; Deng, W. T.; Zhao, Z. C. Multifunctional RGO-based films with “brick-slurry” structure: High-efficiency electromagnetic shielding performance, high strength, and excellent environmental adaptability. Carbon 2022, 200, 156–165.

[50]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[51]

Huang, L. M.; Xiao, G.; Wang, Y. J.; Li, H.; Zhou, Y. H.; Jiang, L.; Wang, J. F. Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 2022, 14, 168.

[52]

Zeng, F. Z.; Chen, X. H.; Xiao, G.; Li, H.; Xia, S.; Wang, J. F. A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 2020, 14, 611–619.

[53]

Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

[54]

Liu, C. X.; Ma, Y. A.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

[55]

Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750–3755.

[56]

Li, W.; Liu, J. W.; Liang, B. L.; Shu, Y. Q.; Wang, J. F. Small molecule hydrogen-bonded toughen nacre-inspired montmorillonite-konjac glucomannan-glycerin film with superior mechanical, transparent, and UV-blocking properties. Compos. Part B Eng. 2021, 204, 108492.

[57]

Xu, Z. H.; Li, X. D. Deformation strengthening of biopolymer in nacre. Adv. Funct. Mater. 2011, 21, 3883–3888.

[58]

Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem., Int. Ed. 2023, 62, e202216874.

[59]

Wang, S. J.; Li, D. S.; Jiang, L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 2019, 6, 1900961.

[60]

Song, Q.; Ye, F.; Yin, X. W.; Li, W.; Li, H. J.; Liu, Y. S.; Li, K. Z.; Xie, K. Y.; Li, X. H.; Fu, Q. G. et al. Carbon nanotube-multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1701583.

[61]

Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

[62]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 2020, 369, 446–450.

Nano Research
Pages 2061-2069
Cite this article:
Wang J, Song T, Ming W, et al. High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Research, 2024, 17(3): 2061-2069. https://doi.org/10.1007/s12274-023-6232-y
Topics:
Part of a topical collection:

958

Views

33

Crossref

32

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 05 September 2023
Revised: 21 September 2023
Accepted: 23 September 2023
Published: 18 November 2023
© Tsinghua University Press 2023
Return