Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) tungsten selenide (WSe2) is promising candidate material for future electronic applications, owing to its potential for ultimate device scaling. For improving the electronic performance of WSe2-based field-effect transistors (FETs), the modification of surface properties is essential. In this study, the seamless structural phase transition in WSe2 lattice is achieved by soft oxygen plasma, regulating the electrical conductance of WSe2-based FETs. We found that during the soft oxygen plasma treatment with optimal processing time, the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length, inducing 2H → 1T phase transition in WSe2 with seamless interfaces. The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe2, significantly increasing the channel conductance of WSe2 FETs. With the further increase of the oxygen plasma treatment time, the creation of more selenium vacancy defects leads to the electronic doping, resulting in the reduction of conductance. Benefiting from the hexagonal boron nitride (h-BN) encapsulation to interrupt the partial structural relaxation from 1T to 2H phase, our WSe2 FET exhibits high electronic stability with conductance of 6.8 × 10−4 S, which is about four orders of magnitude higher than 2H WSe2 (5.8 × 10−8 S). This study could further broaden the WSe2 FETs in applications for functionalization and integration in electronics.
Salahuddin, S.; Ni, K.; Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 2018, 1, 442–450.
Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.
Cheng, Q. L.; Pang, J. B.; Sun, D. H.; Wang, J. G.; Zhang, S.; Liu, F.; Chen, Y. K.; Yang, R. Q.; Liang, N.; Lu, X. H. et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697.
Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moire superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.
Wang, Z. G.; Li, Q.; Chen, Y. F.; Cui, B. X.; Li, Y. R.; Besenbacher, F.; Dong, M. D. The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 2018, 10, 703–712.
Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.
Das, S.; Dubey, M.; Roelofs, A. High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 2014, 105, 083511.
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.
Jang, J.; Ra, H. S.; Ahn, J.; Kim, T. W.; Song, S. H.; Park, S.; Taniguch, T.; Watanabe, K.; Lee, K.; Hwang, D. K. Fermi-level pinning-free WSe2 transistors via 2D van der Waals metal contacts and their circuits. Adv. Mater. 2022, 34, 2109899.
Majee, A. K.; Hemmat, Z.; Foss, C. J.; Salehi-Khojin, A.; Aksamija, Z. Current rerouting improves heat removal in few-layer WSe2 devices. ACS Appl. Mater. Interfaces 2020, 12, 14323–14330.
Sun, C.; Wang, L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.
Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.
Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.
Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.
Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.
Xie, Z. J.; Lei, W. Y.; Zhang, W. F.; Liu, Y.; Yang, L.; Wen, X. K.; Chang, H. X. High-performance large-scale vertical 1T'/2H homojunction CVD-grown polycrystalline MoTe2 transistors. Adv. Mater. Interface 2021, 8, 2002023.
Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1− x W x Te2-based resistive memories. Nat. Mater. 2019, 18, 55–61.
Li, P. L.; Cui, J.; Zhou, J. D.; Guo, D.; Zhao, Z. Z.; Yi, J.; Fan, J.; Ji, Z. Q.; Jing, X. N.; Qu, F. M. et al. Phase transition and superconductivity enhancement in Se-substituted MoTe2 thin films. Adv. Mater. 2019, 31, 1904641.
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.
Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
Sun, J.; Lin, N.; Tang, C.; Wang, H. Y.; Ren, H.; Zhao, X. Electronic and transport properties of 2H1- x 1T x MoS2 hybrid structure: A first-principle study. Phys. E 2017, 91, 178–184.
Houssa, M.; Iordanidou, K.; Dabral, A.; Lu, A.; Pourtois, G.; Afanasiev, V.; Stesmans, A. Contact resistance at MoS2-based 2D metal/semiconductor lateral heterojunctions. ACS Appl. Nano Mater. 2019, 2, 760–766.
Wang, Z. C.; Liu, X. Q.; Zhu, J. Q.; You, S. F.; Bian, K.; Zhang, G. Y.; Feng, J.; Jiang, Y. Local engineering of topological phase in monolayer MoS2. Sci. Bull. 2019, 64, 1750–1756.
Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.
Pang, C. S.; Hung, T. Y. T.; Khosravi, A.; Addou, R.; Wang, Q. X.; Kim, M. J.; Wallace, R. M.; Chen, Z. H. Atomically controlled tunable doping in high-performance WSe2 devices. Adv. Electron. Mater. 2020, 6, 1901304.
Lee, K.; Ngo, T. D.; Lee, S.; Shin, H.; Choi, M. S.; Hone, J.; Yoo, W. J. Effects of oxygen plasma treatment on fermi-level pinning and tunneling at the metal–semiconductor interface of WSe2 FETs. Adv. Electron. Mater. 2023, 9, 2200955.
Xia, M. G.; Hu, R. X.; Wang, M.; Liu, S. R.; He, S. D.; Cheng, Z. F. Effect of hydrogen and oxygen plasma on the photoelectronic current and photo-response time of SnS2 flakes. J. Phys. D: Appl. Phys. 2021, 54, 255102.
Tung, R. T. Chemical bonding and fermi level pinning at metal–semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.
Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.
Guo, J. H.; Shi, Y. T.; Bai, X. G.; Wang, X. C.; Ma, T. L. Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 24397–24404.
Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.
Xia, M. Y.; Ning, J.; Wang, D.; Feng, X.; Wang, B. Y.; Guo, H. B.; Zhang, J. C.; Hao, Y. Ammonia-assisted synthesis of gypsophila-like 1T-WSe2/graphene with enhanced potassium storage for all-solid-state supercapacitor. Chem. Eng. J. 2021, 405, 126611.
Cai, X. B.; Wu, Z. F.; Han, X.; Chen, Y.; Xu, S. G.; Lin, J. X. Z.; Han, T. Y.; He, P. G.; Feng, X. M.; An, L. H. et al. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun. 2022, 13, 1777.
McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880–2888.
Hong, S.; Im, H.; Hong, Y. K.; Liu, N.; Kim, S.; Park, J. H. N-Type doping effect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv. Electron. Mater. 2018, 4, 1800308.
Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.
Yue, Q.; Shao, Z. Z.; Chang, S. L.; Li, J. B. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.
Shin, J.; Cho, K.; Kim, T. Y.; Pak, J.; Kim, J. K.; Lee, W.; Kim, J.; Chung, S.; Hong, W. K.; Lee, T. Dose-dependent effect of proton irradiation on electrical properties of WSe2 ambipolar field effect transistors. Nanoscale 2019, 11, 13961–13967.
Ko, S. P.; Shin, J. M.; Kim, Y. J.; Jang, H. K.; Jin, J. E.; Shin, M.; Kim, Y. K.; Kim, G. T. Current fluctuation of electron and hole carriers in multilayer WSe2 field effect transistors. Appl. Phys. Lett. 2015, 107, 242102.
Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 2016, 16, 2720–2727.
Xu, H.; Han, X. Y.; Liu, W.; Liu, P.; Fang, H. H.; Li, X.; Li, Z. N.; Guo, J.; Xiang, B.; Hu, W. D. et al. Ambipolar and robust WSe2 field-effect transistors utilizing self-assembled edge oxides. Adv. Mater. Interface 2020, 7, 1901628.
Hong, J. T.; Wang, M. C.; Jiang, J.; Zheng, P.; Zheng, H.; Zheng, L.; Huo, D. X.; Wu, Z. T.; Ni, Z. H.; Zhang, Y. Optoelectronic performance of multilayer WSe2 transistors enhanced by defect engineering. Appl. Phys. Express 2020, 13, 061004.
Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722–6727.
Lin, D. Y.; Jheng, J. J.; Ko, T. S.; Hsu, H. P.; Lin, C. F. Doping with Nb enhances the photoresponsivity of WSe2 thin sheets. AIP Advances 2018, 8, 055011.
Liu, P.; Zhu, X. Q.; Feng, C.; Huang, M.; Li, J.; Lu, Y. L.; Xiang, B. Enhanced p-type behavior in the hybrid structure of graphene quantum dots/2D-WSe2. Appl. Phys. Lett. 2017, 111, 111603.
Yin, C.; Wang, X. D.; Chen, Y.; Li, D.; Lin, T.; Sun, S.; Shen, H.; Du, P. Y.; Sun, J. L.; Meng, X. J. et al. A ferroelectric relaxor polymer-enhanced p-type WSe2 transistor. Nanoscale 2018, 10, 1727–1734.
Campbell, P. M.; Tarasov, A.; Joiner, C. A.; Tsai, M. Y.; Pavlidis, G.; Graham, S.; Ready, W. J.; Vogel, E. M. Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2. Nanoscale 2016, 8, 2268–2276.
Kwak, D. H.; Jeong, M. H.; Ra, H. S.; Lee, A. Y.; Lee, J. S. Lateral WSe2 p-n junction device electrically controlled by a single-gate electrode. Adv. Opt. Mater. 2019, 7, 1900051.
Park, J. H.; Rai, A.; Hwang, J.; Zhang, C. X.; Kwak, I.; Wolf, S. F.; Vishwanath, S.; Liu, X. Y.; Dobrowolska, M.; Furdyna, J. et al. Band structure engineering of layered WSe2 via one-step chemical functionalization. ACS Nano 2019, 13, 7545–7555.
Liu, D. H.; Chen, X. S.; Yan, Y. P.; Zhang, Z. W.; Jin, Z. P.; Yi, K. Y.; Zhang, C.; Zheng, Y. J.; Wang, Y.; Yang, J. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 2019, 10, 1188.
Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G. et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11, 722–730.
Qiu, H. X.; Liu, Z. Y.; Yao, Y. F.; Herder, M.; Hecht, S.; Samori, P. Simultaneous optical tuning of hole and electron transport in ambipolar WSe2 interfaced with a bicomponent photochromic layer: From high-mobility transistors to flexible multilevel memories. Adv. Mater. 2020, 32, 1907903.
Yang, S.; Lee, G.; Kim, J. Selective p-doping of 2D WSe2 via UV/Ozone treatments and its application in field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 955–961.
Cho, I. T.; Kim, J. I.; Hong, Y.; Roh, J.; Shin, H.; Baek, G. W.; Lee, C.; Hong, B. H.; Jin, S. H.; Lee, J. H. Low frequency noise characteristics in multilayer WSe2 field effect transistor. Appl. Phys. Lett. 2015, 106, 023504.
Chen, C. H.; Wu, C. L.; Pu, J.; Chiu, M. H.; Kumar, P.; Takenobu, T.; Li, L. J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater. 2014, 1, 034001.
Kang, W. M.; Lee, S. T.; Cho, I. T.; Park, T. H.; Shin, H.; Hwang, C. S.; Lee, C.; Park, B. G.; Lee, J. H. Multi-layer WSe2 field effect transistor with improved carrier-injection contact by using oxygen plasma treatment. Solid-State Electron. 2018, 140, 2–7.
Moon, I.; Lee, S.; Lee, M.; Kim, C.; Seol, D.; Kim, Y.; Kim, K. H.; Yeom, G. Y.; Teherani, J. T.; Hone, J. et al. The device level modulation of carrier transport in a 2D WSe2 field effect transistor via a plasma treatment. Nanoscale 2019, 11, 17368–17375.
Ghosh, S.; Varghese, A.; Thakar, K.; Dhara, S.; Lodha, S. Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p–n homojunction. Nat. Commun. 2021, 12, 3336.
Andrews, K.; Rijal, U.; Bowman, A.; Chuang, H. J.; Koehler, M. R.; Yan, J. Q.; Mandrus, D. G.; Chen, P. Y.; Zhou, Z. X. Accumulation-type ohmic van der Waals contacts to nearly intrinsic WSe2 nanosheet-based channels: Implications for field-effect transistors. ACS Appl. Nano Mater. 2021, 4, 5598–5610.
Lee, D.; Choi, Y.; Kim, J.; Kim, J. Recessed-channel WSe2 field-effect transistor via self-terminated doping and layer-by-layer etching. ACS Nano 2022, 16, 8484–8492.
Liu, X. C.; Pan, Y. C.; Yang, J. Q.; Qu, D. S.; Li, H. M.; Yoo, W. J.; Sun, J. High performance WSe2 p-MOSFET with intrinsic n-channel based on back-to-back p-n junctions. Appl. Phys. Lett. 2021, 118, 233101.
Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 2016, 10, 5153–5160.