AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density

Dunyuan Jin1Fen Qiao1( )Yan Zhou1Junfeng Wang1Kecheng Cao2Jing Yang1Jikang Zhao1Lei Zhou1Haitao Li1,3( )
School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

Due to activated water molecules and optimized interfacial water structure and hydrogen adsorption energy, the overpotential of Cu/Mo2C is 24 mV at a current density of 10 mA·cm−2 and 178 mV at a current density of 1000 mA·cm−2.

Abstract

The development of efficient non-precious metal catalysts is important for the large-scale application of alkaline hydrogen evolution reaction (HER). Here, we synthesized a composite catalyst of Cu and Mo2C (Cu/Mo2C) using Anderson-type polyoxometalates (POMs) synthesized by the facile soaking method as precursors. The electronic interaction between Cu and Mo2C drives the positive charge of Cu, alleviating the strong adsorption of hydrogen at the Mo site by modulating the d-band center of Mo2C. By studying the interfacial water structure using in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), we determined that the positively charged Cu crystals have the function of activating water molecules and optimizing the interfacial water structure. The interfacial water of Cu/Mo2C contains a large amount of free water, which could facilitate the transport of reaction intermediates. Due to activated water molecules and optimized interfacial water structure and hydrogen adsorption energy, the overpotential of Cu/Mo2C is 24 mV at a current density of 10 mA·cm−2 and 178 mV at a current density of 1000 mA·cm−2. This work improves catalyst performance in terms of interfacial water structure optimization and deepens the understanding of water-mediated catalysis.

Electronic Supplementary Material

Download File(s)
12274_2023_6237_MOESM1_ESM.pdf (3.5 MB)

References

[1]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

[2]

Wu, F.; Yang, R.; Lu, S. S.; Du, W.; Zhang, B.; Shi, Y. M. Unveiling partial transformation and activity origin of sulfur vacancies for hydrogen evolution. ACS Energy Lett. 2022, 7, 4198–4203.

[3]

Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 9, 2200307.

[4]

Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

[5]

Bhunia, K.; Chandra, M.; Kumar Sharma, S.; Pradhan, D.; Kim, S. J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord. Chem. Rev. 2023, 478, 214956.

[6]

Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

[7]

Chen, Y. F.; Meng, G.; Yang, T.; Chen, C.; Chang, Z. W.; Kong, F. T.; Tian, H.; Cui, X. Z.; Hou, X. M.; Shi, J. L. Interfacial engineering of Co-doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138157.

[8]

Jiao, J. Q.; Zhang, N. N.; Zhang, C.; Sun, N.; Pan, Y.; Chen, C.; Li, J.; Tan, M. J.; Cui, R. X.; Shi, Z. L. et al. Doping ruthenium into metal matrix for promoted pH-universal hydrogen evolution. Adv. Sci. 2022, 9, 2200010.

[9]

Dan, Z. X.; Liang, W. L.; Gong, X. Y.; Lin, X. Y.; Zhang, W. Q.; Le, Z. C.; Xie, F. Y.; Chen, J.; Yang, M. Z.; Wang, N. et al. Substitutional doping engineering toward W2N nanorod for hydrogen evolution reaction at high current density. ACS Mater. Lett. 2022, 4, 1374–1380.

[10]

Sun, K. A.; Wu, X. Y.; Zhuang, Z. W.; Liu, L. Y.; Fang, J. J.; Zeng, L. Y.; Ma, J. G.; Liu, S. J.; Li, J. Z.; Dai, R. Y. et al. Interfacial water engineering boosts neutral water reduction. Nat. Commun. 2022, 13, 6260.

[11]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85

[12]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[13]

Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

[14]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[15]

Liu, E. S.; Jiao, L.; Li, J. K.; Stracensky, T.; Sun, Q.; Mukerjee, S.; Jia, Q. Y. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 2020, 13, 3064–3074.

[16]

Ma, F. X.; Wu, H. B.; Xia, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 15395–15399.

[17]

Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 2017, 11, 12509–12518.

[18]

Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

[19]

Hu, M. H.; Chen, H. Y.; Liu, B. C.; Xu, X.; Cao, B.; Jing, P.; Zhang, J. J.; Gao, R.; Zhang, J. Coupling ceria with dual-phased molybdenum carbides for efficient and stable hydrogen evolution electrocatalysis at large-current-density in freshwater and seawater. Appl. Catal. B: Environ. 2022, 317, 121774.

[20]

Li, J. C.; Wang, X. Y.; Wang, Y.; Zhao, Y. C.; Ma, C. H.; Zhan, T. Z.; Chen, L. H.; Zhao, C. Q.; Lan, J.; Xiao, Z. C. et al. N-doped Mo2C nanoparticles prepared from organic-derived polyoxomolybdates for efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 28915–28923.

[21]

Yu, F. Y.; Gao, Y.; Lang, Z. L.; Ma, Y. Y.; Yin, L. Y.; Du, J.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction. Nanoscale 2018, 10, 6080–6087.

[22]

Wu, P. F.; Wang, Y.; Huang, B.; Xiao, Z. C. Anderson-type polyoxometalates: From structures to functions. Nanoscale 2021, 13, 7119–7133.

[23]

Shah, A. H.; Zhang, Z. S.; Huang, Z. H.; Wang, S. B.; Zhong, G. Y.; Wan, C. Z.; Alexandrova, A. N.; Huang, Y.; Duan, X. F. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 2022, 5, 923–933.

[24]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[25]

Lee, U.; Joo, H. C.; Kwon, J. S. Tetraammonium hexahydrogen hexamolybdonickelate(II) tetrahydrate, (NH4)4[H6NiMo6O24]·4H2O. Acta Crystall. Sec. E 2002, 58, i6–i8.

[26]

Mazanik, A. V.; Kulak, A. I.; Bondarenko, E. A.; Korolik, O. V.; Mahon, N. S.; Streltsov, E. A. Strong room temperature exciton photoluminescence in electrochemically deposited Cu2O films. J. Lumin. 2022, 251, 119227.

[27]

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

[28]

Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

[29]

Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.

[30]

Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.

[31]

Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

[32]

Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

[33]

Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoO x mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

[34]

Le, J. B.; Fan, Q. Y.; Perez-Martinez, L.; Cuesta, A.; Cheng, J. Theoretical insight into the vibrational spectra of metal-water interfaces from density functional theory based molecular dynamics. Phys. Chem. Chem. Phys. 2018, 20, 11554–11558.

[35]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[36]

Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701

[37]

Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.

[38]

Zhao, L. L.; Yuan, H. F.; Sun, D. H.; Jia, J.; Yu, J. Y.; Zhang, X. L.; Liu, X. Y.; Liu, H.; Zhou, W. J. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction. Nano Energy 2020, 77, 105056.

[39]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

Nano Research
Pages 2546-2554
Cite this article:
Jin D, Qiao F, Zhou Y, et al. Cu/Mo2C synthesized through Anderson-type polyoxometalates modulate interfacial water structure to achieve hydrogen evolution at high current density. Nano Research, 2024, 17(4): 2546-2554. https://doi.org/10.1007/s12274-023-6237-6
Topics:

702

Views

5

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 July 2023
Revised: 19 September 2023
Accepted: 01 October 2023
Published: 14 November 2023
© Tsinghua University Press 2023
Return