Li-ion batteries (LIBs) are one type of more and more widely used devices for energy storage and power supply in which cathode materials are playing a relatively more decisive role at current stage. In this review, we start with pioneeringly commercialized LiCoO2 (LCO) with a layered rhombohedral structure (space group
Dong, Y. H.; Li, J. Oxide cathodes: Functions, instabilities, self healing, and degradation mitigations. Chem. Rev. 2023, 123, 811–833.
Xiang, J. W.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L. X.; Xu, H. H.; Huang, Y. H. Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 2022, 34, 2200912.
Zeng, C.; Liang, J. N.; Cui, C.; Zhai, T. Y.; Li, H. Q. Dynamic investigation of battery materials via advanced visualization: From particle, electrode to cell level. Adv. Mater. 2022, 34, 2200777.
Zheng, J. X.; Archer, L. A. Crystallographically textured electrodes for rechargeable batteries: Symmetry, fabrication, and characterization. Chem. Rev. 2022, 122, 14440–14470.
Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3 d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.
Rehnlund, D.; Wang, Z. H.; Nyholm, L. Lithium-diffusion induced capacity losses in lithium-based batteries. Adv. Mater. 2022, 34, 2108827.
Nie, L.; Chen, S. J.; Liu, W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Res. 2023, 16, 391–402.
Muralidharan, N.; Self, E. C.; Dixit, M.; Du, Z. J.; Essehli, R.; Amin, R.; Nanda, J.; Belharouak, I. Next-generation cobalt-free cathodes—A prospective solution to the battery industry's cobalt problem. Adv. Energy Mater. 2022, 12, 2103050.
Gou, X. X.; Hao, Z. K.; Hao, Z. M.; Yang, G. J.; Yang, Z.; Zhang, X. Y.; Yan, Z. H.; Zhao, Q.; Chen, J. In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries. Adv. Funct. Mater. 2022, 32, 2112088.
Zhang, W. J.; Chen, Y.; Xu, C. J.; Lin, C.; Tao, J. M.; Lin, Y. B.; Li, J. X.; Kolosov, O. V.; Huang, Z. G. Tunable electrical field-induced metal-insulator phase separation in LiCoO2 synaptic transistor operating in post-percolation region. Nano Energy 2023, 108, 108199.
Xu, S. Y.; Tan, X. H.; Ding, W. Y.; Ren, W. J.; Zhao, Q.; Huang, W. Y.; Liu, J. J.; Qi, R.; Zhang, Y. X.; Yang, J. C. et al. Promoting surface electric conductivity for high-rate LiCoO2. Angew. Chem., Int. Ed. 2023, 62, e202218595.
Tan, X. H.; Zhao, T. Q.; Song, L. T.; Mao, D. D.; Zhang, Y. X.; Fan, Z. W.; Wang, H. F.; Chu, W. G. Simultaneous near-surface trace doping and surface modifications by gas–solid reactions during one-pot synthesis enable stable high-voltage performance of LiCoO2. Adv. Energy Mater. 2022, 12, 2200008.
Tan, X. H.; Zhao, T. Q.; Guo, L. M.; Mao, D. D.; Song, L. T.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Impact of electrolyte-permeable microcracks in secondary particles on performance of high nickel layered oxides: Negative or positive. Mater. Today Energy 2022, 24, 100942.
Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.
Wang, J.; Yuan, Q.; Ren, Z. X.; Sun, C. H.; Zhang, J. F.; Wang, R.; Qian, M. M.; Shi, Q.; Shao, R. W.; Mu, D. B. et al. Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries. Nano Lett. 2022, 22, 5221–5229.
Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.
You, B. Z.; Wang, Z. X.; Shen, F.; Chang, Y. J.; Peng, W. J.; Li, X. H.; Guo, H. J.; Hu, Q. Y.; Deng, C. W.; Yang, S. et al. Research progress of single-crystal nickel-rich cathode materials for lithium ion batteries. Small Methods 2021, 5, 2100234.
Jia, K.; Wang, J. X.; Ma, J.; Liang, Z.; Zhuang, Z. F.; Ji, G. J.; Gao, R. H.; Piao, Z.; Li, C.; Zhou, G. M. et al. Suppressed lattice oxygen release via Ni/Mn doping from spent LiNi0.5Mn0.3Co0.2O2 toward high-energy layered-oxide cathodes. Nano Lett. 2022, 22, 8372–8380.
Zuo, Y. X.; Shang, H. F.; Hao, J. Z.; Song, J.; Ning, F. H.; Zhang, K.; He, L. H.; Xia, D. G. Regulating the potential of anion redox to reduce the voltage hysteresis of Li-rich cathode materials. J. Am. Chem. Soc. 2023, 145, 5174–5182.
Zhang, K.; Qi, J. Z.; Song, J.; Zuo, Y. X.; Yang, Y. L.; Yang, T. H.; Chen, T.; Liu, X.; Chen, L. W.; Xia, D. G. Sulfuration of Li-rich Mn-based cathode materials for multianionic redox and stabilized coordination environment. Adv. Mater. 2022, 34, 2109564.
Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 7778–7782.
Guo, L. M.; Tan, X. H.; Mao, D. D.; Zhao, T. Q.; Song, L. T.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F.; Chu, W. G. Improved electrochemical activity of the Li2MnO3-like superstructure in high-nickel Li-rich layered oxide Li1.2Ni0.4Mn0.4O2 and its enhanced performances via tungsten doping. Electrochim. Acta 2021, 370, 137808.
Mao, D. D.; Tan, X. H.; Guo, L. M.; Zhao, T. Q.; Fan, Z. W.; Song, L. T.; Zhang, Y. X.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Lithium antievaporation-loss engineering via sodium/potassium doping enables superior electrochemical performance of high-nickel Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 2022, 14, 19594–19603.
Chen, J. N.; Yang, Y.; Tang, Y. S.; Wang, Y. F.; Li, H.; Xiao, X. H.; Wang, S. N.; Dewi Darma, M. S.; Etter, M.; Missyul, A. et al. Constructing a thin disordered self-protective layer on the LiNiO2 primary particles against oxygen release. Adv. Funct. Mater. 2023, 33, 2211515.
Zaker, N.; Geng, C. X.; Rathore, D.; Hamam, I.; Chen, N.; Xiao, P. H.; Yang, C. Y.; Dahn, J. R.; Botton, G. A. Probing the mysterious behavior of tungsten as a dopant inside pristine cobalt-free nickel-rich cathode materials. Adv. Funct. Mater. 2023, 33, 2211178.
Tian, R. Y.; Liu, G. Y.; Liu, H. Q.; Zhang, L. N.; Gu, X. H.; Guo, Y. J.; Wang, H. F.; Sun, L. F.; Chu, W. G. Very high power and superior rate capability LiFePO4 nanorods hydrothermally synthesized using tetraglycol as surfactant. RSC Adv. 2015, 5, 1859–1866.
Tian, R. Y.; Liu, H. Q.; Jiang, Y.; Chen, J. K.; Tan, X. H.; Liu, G. Y.; Zhang, L. N.; Gu, X. H.; Guo, Y. J.; Wang, H. F. et al. Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: A selective carbon coating process. ACS Appl. Mater. Interfaces 2015, 7, 11377–11386.
Liu, H. Q.; Jiang, Y.; Tan, X. H.; Chen, J. K.; Guo, Y. J.; Wang, H. F.; Chu, W. G. Synthesis of well-crystallized, high-performance LiNi0.5Mn1.5O4 octahedra as lithium-ion-battery electrode promoted by metal manganese powders. Energy Technol. 2017, 5, 414–421.
Ji, H. W.; Urban, A.; Kitchaev, D. A.; Kwon, D. H.; Artrith, N.; Ophus, C.; Huang, W. X.; Cai, Z. J.; Shi, T.; Kim, J. C. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 2019, 10, 592.
Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.
Zhang, W. J.; Yuan, C. H.; Zhu, J. F.; Jin, T.; Shen, C.; Xie, K. Y. Air instability of Ni-rich layered oxides-a roadblock to large scale application. Adv. Energy Mater. 2023, 13, 2202993.
Ju, X. K.; Hou, X.; Liu, Z. Q.; Du, L. L.; Zhang, L.; Xie, T. T.; Paillard, E.; Wang, T. H.; Winter, M.; Li, J. Revealing the effect of high Ni content in Li-rich cathode materials: Mitigating voltage decay or increasing intrinsic reactivity. Small 2023, 19, 2207328.
Kwon, S. N.; Song, M. Y.; Park, H. R. Electrochemical properties of LiNiO2 substituted by Al or Ti for Ni via the combustion method. Ceram. Int. 2014, 40, 14141–14147.
Zhang, J. X.; Wang, P. F.; Bai, P. X.; Wan, H. L.; Liu, S. F.; Hou, S.; Pu, X. J.; Xia, J. L.; Zhang, W. R.; Wang, Z. Y. et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 2022, 34, 2108353.
Yang, X. R.; Wang, C. W.; Yan, P. F.; Jiao, T. P.; Hao, J. L.; Jiang, Y. Y.; Ren, F. C.; Zhang, W. G.; Zheng, J. M.; Cheng, Y. et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 2022, 12, 2200197.
Qin, Y. P.; Xu, K. Y.; Wang, Q.; Ge, M. H.; Cheng, T.; Liu, M.; Cheng, H. Y.; Hu, Y. B.; Shen, C.; Wang, D. Y. et al. In-situ constructing a rigid and stable dual-layer CEI film improving high-voltage 4.6 V LiCoO2 performances. Nano Energy 2022, 96, 107082
Ruan, D. G.; Chen, M.; Wen, X. Y.; Li, S. Q.; Zhou, X. G.; Che, Y. X.; Chen, J. K.; Xiang, W. J.; Li, S. L.; Wang, H. et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021, 90, 106535
Tan, X. H.; Mao, D. D.; Zhao, T. Q.; Zhang, Y. X.; Song, L. T.; Fan, Z. W.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Long-term highly stable high-voltage LiCoO2 synthesized via a solid sulfur-assisted one-pot approach. Small 2022, 18, 2202143.
Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Liu, J. D.; Zhang, Y. D.; Lu, Y.; Yan, Z. H.; Zhang, K.; Zhao, Q.; Cheng, F. Y. et al. Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating. Angew. Chem., Int. Ed. 2022, 61, e202207000.
Huang, H.; Li, Z. Q.; Gu, S.; Bian, J. C.; Li, Y. Z.; Chen, J. J.; Liao, K. M.; Gan, Q. M.; Wang, Y. F.; Wu, S. S. et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 2021, 11, 2101864.
Zhang, Y. X.; Kim, J. C.; Song, H. W.; Lee, S. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Nanoscale 2023, 15, 4195–4218.
Jamil, S.; Li, C. M.; Fasehullah, M.; Liu, P.; Xiao, F. Y.; Wang, H.; Bao, S. J.; Xu, M. W. Ni/Li antisite induced disordered passivation layer for high-Ni layered oxide cathode material. Energy Storage Mater. 2022, 45, 720–729.
Hyun, H.; Jeong, K.; Hong, H.; Seo, S.; Koo, B.; Lee, D.; Choi, S.; Jo, S.; Jung, K.; Cho, H. H. et al. Suppressing high-current-induced phase separation in Ni-rich layered oxides by electrochemically manipulating dynamic lithium distribution. Adv. Mater. 2021, 33, 2105337.
Yan, P. F.; Zheng, J. M.; Liu, J.; Wang, B. Q.; Cheng, X. P.; Zhang, Y. F.; Sun, X. L.; Wang, C. M.; Zhang, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 2018, 3, 600–605.
Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.
Deng, T.; Fan, X. L.; Cao, L. S.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X. Q.; Hu, E. Y. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 2019, 3, 2550–2564.
Ober, S.; Mesnier, A.; Manthiram, A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 1442–1451.
Mohan, P.; Kalaignan, G. P. Structure and electrochemical performance of LiFe x Ni1- x O2 (0.00 ≤ x ≤ 0.20) cathode materials for rechargeable lithium-ion batteries. J. Electroceram. 2013, 31, 210–217.
Yoon, C. S.; Jun, D. W.; Myung, S. T.; Sun, Y. K. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2017, 2, 1150–1155.
Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J. There and back again-the journey of LiNiO2 as a cathode active material. Angew. Chem., Int. Ed. 2019, 58, 10434–10458.
Chen, J.; Zou, G. Q.; Deng, W. T.; Huang, Z. D.; Gao, X.; Liu, C.; Yin, S. Y.; Liu, H. Q.; Deng, X. L.; Tian, Y. et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv. Funct. Mater. 2020, 30, 2004302.
He, W.; Liu, P. F.; Qu, B. H.; Zheng, Z. M.; Zheng, H. F.; Deng, P.; Li, P.; Li, S. Y.; Huang, H.; Wang, L. S. et al. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 2019, 6, 1802114.
Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2–/O– redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.
Guo, L. M.; Tan, X. H.; Liu, S. N.; Wu, J. X.; Ren, J. C.; Zhao, T. Q.; Kang, X. H.; Wang, H. F.; Chu, W. G. Considerable capacity increase of high-nickel lithium-rich cathode materials by effectively reducing oxygen loss and activating Mn4+/3+ redox couples via Mo doping. J. Alloys Compd. 2019, 790, 170–178.
Zhang, H. L.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. W. Oxygen loss in layered oxide cathodes for Li-ion batteries: Mechanisms, effects, and mitigation. Chem. Rev. 2022, 122, 5641–5681.
Huang, Y. Y.; Zhu, Y. C.; Fu, H. Y.; Ou, M. Y.; Hu, C. C.; Yu, S. J.; Hu, Z. W.; Chen, C. T.; Jiang, G.; Gu, H. K. et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V. Angew. Chem., Int. Ed. 2021, 60, 4682–4688.
Wang, L.; Yang, Z. Z.; Samarakoon, W. S.; Zhou, Y. D.; Bowden, M. E.; Zhou, H.; Tao, J. H.; Zhu, Z. H.; Lahiri, N.; Droubay, T. C. et al. Spontaneous lithiation of binary oxides during epitaxial growth on LiCoO2. Nano Lett. 2022, 22, 5530–5537.
Xia, J.; Zhang, N.; Yang, Y. J.; Chen, X.; Wang, X.; Pan, F.; Yao, J. N. Lanthanide contraction builds better high-voltage LiCoO2 batteries. Adv. Funct. Mater. 2023, 33, 2212869.
Hu, B.; Lou, X. B.; Li, C.; Geng, F. S.; Zhao, C.; Wang, J. Y.; Shen, M.; Hu, B. W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. J. Power Sources 2019, 438, 226954.
Cheng, J. H.; Pan, C. J.; Nithya, C.; Thirunakaran, R.; Gopukumar, S.; Chen, C. H.; Lee, J. F.; Chen, J. M.; Sivashanmugam, A.; Hwang, B. J. Effect of Mg doping on the local structure of LiMg y Co1- y O2 cathode material investigated by X-ray absorption spectroscopy. J. Power Sources 2014, 252, 292–297.
Umair, M.; Nazir, G.; Murtaza, G.; Elamin, N. Y.; Muhammad, N.; Amin, M. A.; Somaily, H. H. Synthesis and characterization of Al and Zr-dual-doped lithium cobalt oxide cathode for Li-ion batteries using a facile hydrothermal approach. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 641, 128493.
Kong, W. J.; Wong, D.; An, K.; Zhang, J. C.; Chen, Z. H.; Schulz, C.; Xu, Z. J.; Liu, X. F. Stabilizing the anionic redox in 4.6 V LiCoO2 cathode through adjusting oxygen magnetic moment. Adv. Funct. Mater. 2022, 32, 2202679.
Tan, X. H.; Chen, Z. F.; Liu, T. C.; Zhang, Y. X.; Zhang, M. J.; Li, S. N.; Chu, W. G.; Liu, K.; Yang, P. H.; Pan, F. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes. Adv. Mater. 2023, 35, 2301096.
Zou, L. H.; Zhang, Y.; Wang, F.; Zhou, B. L.; Wang, Z. Y. Improving the cycle performance of LiNi0.5Co0.3Mn0.2O2 cathode material for lithium-ion batteries by carbon coating. Integr. Ferroelectr. 2013, 147, 103–109.
Kong, W. J.; Zhang, J. C.; Wong, D.; Yang, W. Y.; Yang, J. B.; Schulz, C.; Liu, X. F. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew. Chem., Int. Ed. 2021, 60, 27102–27112.
Kim, S.; Cho, W.; Zhang, X. B.; Oshima, Y.; Choi, J. W. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 2016, 7, 13598.
Rozier, P.; Tarascon, J. M. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.
Koichi, N.; Chie, S.; Shoji, Y. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett. 1997, 26, 725–726.
Yi, T. F.; Tao, W.; Chen, B.; Zhu, Y. R.; Yang, S. Y.; Xie, Y. High-performance xLi2MnO3·(1− x)LiMn1/3Co1/3Ni1/3O2 (0.1 x 0.5) as cathode material for lithium-ion battery. Electrochim. Acta 2016, 188, 686–695.
Liu, Q. M.; Zhu, H. L.; Liu, J.; Liao, X. W.; Tang, Z. L.; Zhou, C. K.; Yuan, M. M.; Duan, J. F.; Li, L. J.; Chen, Z. Y. High-performance lithium-rich layered oxide material: Effects of preparation methods on microstructure and electrochemical properties. Materials 2020, 13, 334.
Luo, D.; Cui, J. X.; Zhang, B. K.; Fan, J. M.; Liu, P. Z.; Ding, X. K.; Xie, H. X.; Zhang, Z. H.; Guo, J. J.; Pan, F. et al. Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2009310.
Shao, Q. N.; Gao, P. Y.; Yan, C. H.; Gao, M. X.; Du, W. B.; Chen, J.; Yang, Y. X.; Gan, J. T.; Wu, Z. J.; Zhang, C. Y. et al. A redox couple strategy enables long-cycling Li- and Mn-rich layered oxide cathodes by suppressing oxygen release. Adv. Mater. 2022, 34, 2108543.
Song, J.; Ning, F. H.; Zuo, Y. X.; Li, A.; Wang, H. C.; Zhang, K.; Yang, T. H.; Yang, Y. L.; Gao, C.; Xiao, W. K. et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials. Adv. Mater. 2023, 35, 2208726.
Yang, X. X.; Wang, S. N.; Han, D. Z.; Wang, K.; Tayal, A.; Baran, V.; Missyul, A.; Fu, Q.; Song, J. X.; Ehrenberg, H. et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathodes. Small 2022, 18, 2201522.
Boivin, E.; Guerrini, N.; House, R. A.; Lozano, J. G.; Jin, L. Y.; Rees, G. J.; Somerville, J. W.; Kuss, C.; Roberts, M. R.; Bruce, P. G. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2003660.
Chai, K.; Zhang, J. C.; Li, Q. Y.; Wong, D.; Zheng, L. R.; Schulz, C.; Bartkowiak, M.; Smirnov, D.; Liu, X. F. Facilitating reversible cation migration and suppressing O2 escape for high performance Li-rich oxide cathodes. Small 2022, 18, 2201014.
Zheng, H. F.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; Liu, P. F.; Wang, L. S.; Wei, Q. L.; Lin, J.; Sa, B.; Xie, Q. S. et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.
Huang, J. P.; Ouyang, B.; Zhang, Y. Q.; Yin, L.; Kwon, D. H.; Cai, Z. J.; Lun, Z.; Zeng, G. B.; Balasubramanian, M.; Ceder, G. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Nat. Mater. 2023, 22, 353–361.
Ding, X.; Li, Y. X.; Wang, S.; Dong, J. M.; Yasmin, A.; Hu, Q.; Wen, Z. Y.; Chen, C. H. Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification. Nano Energy 2019, 61, 411–419.
Hy, S.; Felix, F.; Rick, J.; Su, W. N.; Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni x Li(1−2 x )/3Mn(2− x )/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 2014, 136, 999–1007.
Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.
Hua, W. B.; Wang, S. N.; Knapp, M.; Leake, S. J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J. R.; Grey, C. P.; Ehrenberg, H. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 2019, 10, 5365.
Hua, W. B.; Yang, X. X.; Casati, N. P. M.; Liu, L. J.; Wang, S. N.; Baran, V.; Knapp, M.; Ehrenberg, H.; Indris, S. Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides. eScience 2022, 2, 183–191.
Zhang, C. X.; Wei, B.; Wang, M. Y.; Zhang, D. T.; Uchiyama, T.; Liang, C. P.; Chen, L. B.; Uchimoto, Y.; Zhang, R. F.; Wang, P. et al. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Mater. 2022, 46, 512–522.
Chong, S. K.; Liu, Y. N.; Yan, W. W.; Chen, Y. Z. Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li1.2Ni x Mn0.8- x O2 cathode materials for lithium-ion batteries. RSC Adv. 2016, 6, 53662–53668.
Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.
Mao, D. D.; Tan, X. H.; Fan, Z. W.; Song, L. T.; Zhang, Y. X.; Zhang, P.; Su, S.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Unveiling the roles of trace Fe and F Co-doped into high-Ni Li-rich layered oxides in performance improvement. ACS Appl. Mater. Interfaces 2023, 15, 10774–10784.
Shen, K.; Xu, X. J.; Tang, Y. P. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 2022, 92, 106703.
Han, Y. K.; Lei, Y. K.; Ni, J.; Zhang, Y. C.; Geng, Z.; Ming, P. W.; Zhang, C. M.; Tian, X. R.; Shi, J. L.; Guo, Y. G. et al. Single-crystalline cathodes for advanced Li-ion batteries: Progress and challenges. Small 2022, 18, 2107048.
Jing, Z. W.; Wang, S. N.; Fu, Q.; Baran, V.; Tayal, A.; Casati, N. P. M.; Missyul, A.; Simonelli, L.; Knapp, M.; Li, F. J. et al. Architecting “Li-rich Ni-rich” core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Mater. 2023, 59, 102775.
Dahn, J. R.; von Sacken, U.; Michal, C. A. Structure and electrochemistry of Li1± y NiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 1990, 44, 87–97.
Dutta, G.; Manthiram, A.; Goodenough, J. B.; Grenier, J. C. Chemical synthesis and properties of Li1− δ − x Ni1+ δ O2 and Li[Ni2]O4. J. Solid State Chem. 1992, 96, 123–131.
Bruce, P. G.; Lisowska-Oleksiak, A.; Saidi, M. Y.; Vincent, C. A. Vacancy diffusion in the intercalation electrode Li1− x NiO2. Solid State Ionics 1992, 57, 353–358.
Cui, Z. H.; Guo, Z. Z.; Manthiram, A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv. Energy Mater. 2023, 13, 2203853.
Yuwono, R. A.; Wang, F. M.; Wu, N. L.; Chen, Y. C.; Chen, H.; Chen, J. M.; Haw, S. C.; Lee, J. F.; Xie, R. K.; Sheu, H. S. et al. Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries. Chem. Eng. J. 2023, 456, 141065.
Kim, M.; Zou, L. F.; Son, S. B.; Bloom, I. D.; Wang, C. M.; Chen, G. Y. Improving LiNiO2 cathode performance through particle design and optimization. J. Mater. Chem. A 2022, 10, 12890–12899.
Goonetilleke, D.; Mazilkin, A.; Weber, D.; Ma, Y.; Fauth, F.; Janek, J.; Brezesinski, T.; Bianchini, M. Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux. J. Mater. Chem. A 2022, 10, 7841–7855.
Geng, C. X.; Rathore, D.; Heino, D.; Zhang, N.; Hamam, I.; Zaker, N.; Botton, G. A.; Omessi, R.; Phattharasupakun, N.; Bond, T. et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv. Energy Mater. 2022, 12, 2103067.
Liu, Z. C.; Zhen, H. H.; Kim, Y.; Liang, C. D. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level. J. Power Sources 2011, 196, 10201–10206.
Cho, J.; Kim, T. J.; Kim, Y. J.; Park, B. High-performance ZrO2-coated LiNiO2 cathode materials. Electrochem. Solid-State Lett. 2001, 4, A159–A161.
Kang, J.; Han, B. First-principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. ACS Appl. Mater. Interfaces 2015, 7, 11599–11603.
Mohan, P.; Kalaignan, G. P. Electrochemical behaviour of surface modified SiO2-coated LiNiO2 cathode materials for rechargeable lithium-ion batteries. J. Nanosci. Nanotechnol. 2013, 13, 2765–2770.
Kaneda, H.; Furuichi, Y.; Ikezawa, A.; Arai, H. Effects of aluminum substitution in nickel-rich layered LiNi x Al1− x O2 ( x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance. J. Mater. Chem. A 2021, 9, 21981–21994.
Zhang, Q. H.; Su, Y. W.; Shi, Z. X.; Yang, X. Z.; Sun, J. Y. Artificial interphase layer for stabilized Zn anodes: Progress and prospects. Small 2022, 18, 2203583.
Yu, T.; Yang, H. C.; Cheng, H. M.; Li, F. Theoretical progress of 2D six-membered-ring inorganic materials as anodes for non-lithium-ion batteries. Small 2022, 18, 2107868.
Xu, J. K.; Lei, J. F.; Ming, N. N.; Zhang, C. T.; Huo, K. F. Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204426.
Xu, G. Y.; Zhu, C. Y.; Gao, G. Recent progress of advanced conductive metal-organic frameworks: Precise synthesis, electrochemical energy storage applications, and future challenges. Small 2022, 18, 2203140.
Wu, M. C.; Zheng, W. Y.; Hu, X.; Zhan, F. Y.; He, Q. Q.; Wang, H. Y.; Zhang, Q. C.; Chen, L. Y. Exploring 2D energy storage materials: Advances in structure, synthesis, optimization strategies, and applications for monovalent and multivalent metal-ion hybrid capacitors. Small 2022, 18, 2205101.
Wang, Z.; Pan, F.; Zhao, Q.; Lv, M. L.; Zhang, B. The application of covalent organic frameworks in lithium-sulfur batteries: A mini review for current research progress. Front. Chem. 2022, 10, 1055649.
Ren, X. H.; Wang, H. Y.; Chen, J.; Xu, W. L.; He, Q. Q.; Wang, H. Y.; Zhan, F. Y.; Chen, S. W.; Chen, L. Y. Emerging 2D copper-based materials for energy storage and conversion: A review and perspective. Small 2023, 19, 2204121.
Xie, L. J.; Tang, C.; Bi, Z. H.; Song, M. X.; Fan, Y. F.; Yan, C.; Li, X. M.; Su, F. Y.; Zhang, Q.; Chen, C. M. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective. Adv. Energy Mater. 2021, 11, 2101650.
Shen, Y. F.; Qian, J. F.; Yang, H. X.; Zhong, F. P.; Ai, X. P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 2020, 16, 1907602.
Zhuo, R. F.; Quan, W. W.; Huang, X. Z.; He, Q.; Sun, Z. G.; Zhang, Z. Y.; Wang, J. Well-dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries. Nanotechnology 2021, 32, 145402.
Xu, Z. W.; Wang, Y.; Liu, M. Y.; Sarwar, M. K.; Zhao, Y. X. Defects enriched cobalt molybdate induced by carbon dots for a high rate Li-ion battery anode. Nanotechnology 2022, 33, 075402.
Permana, A. D. C.; Omar, A.; Gonzalez-Martinez, I. G.; Oswald, S.; Giebeler, L.; Nielsch, K.; Mikhailova, D. MOF-derived onion-like carbon with superior surface area and porosity for high performance lithium-ion capacitors. Batt. Supercaps 2022, 5, e202100353.
Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.
Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.
Ha, S.; Hyun, J. C.; Kwak, J. H.; Lim, H. D.; Yun, Y. S. Hierarchically nanoporous 3D assembly composed of functionalized onion-like graphitic carbon nanospheres for anode-minimized Li metal batteries. Small 2020, 16, 2003918.
Chai, Y. J.; Du, Y. H.; Li, L.; Wang, N. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 2020, 31, 215402.
Xie, Y. W.; Zhang, H. Y.; Yu, J. L.; Liu, Z. J.; Zhang, S. S.; Shao, H. Y.; Cao, Y. L.; Huang, X. F.; Li, S. K. A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton. Small 2022, 18, 2104876.
Liu, R. Q.; Xu, S. S.; Shao, X. X.; Wen, Y.; Shi, X. R.; Hu, J.; Yang, Z. Carbon coating on metal oxide materials for electrochemical energy storage. Nanotechnology 2021, 32, 502004.
Olsson, E.; Yu, J. L.; Zhang, H. Y.; Cheng, H. M.; Cai, Q. Atomic-scale design of anode materials for alkali metal (Li/Na/K)-ion batteries: Progress and perspectives. Adv. Energy Mater. 2022, 12, 2200662.
Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.
Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core–shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.
Lee, M. J.; Lee, K.; Lim, J.; Li, M. C.; Noda, S.; Kwon, S. J.; DeMattia, B.; Lee, B.; Lee, S. W. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 2021, 31, 2009397.
Zhang, F.; Zhu, W. Q.; Li, T. T.; Yuan, Y.; Yin, J.; Jiang, J. H.; Yang, L. S. Advances of synthesis methods for porous silicon-based anode materials. Front. Chem. 2022, 10, 889563.
Song, L. T.; Zhao, T. Q.; Tan, X. H.; Mao, D. D.; Su, S.; Fan, Z. W.; Chu, W. G. Biomass-derived hierarchically porous (nitrogen, phosphorus) Co-doped SiO x /C composite nanosheet architectures for superior lithium storage and ultra-long cycle performance. Batt. Supercaps 2022, 5, e202100350.
McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.
Guo, X. T.; Xu, H. Y.; Li, W. T.; Liu, Y. Y.; Shi, Y. X.; Li, Q.; Pang, H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci. 2023, 10, 2206084.
Tan, W.; Wang, L. N.; Lu, Z. G.; Yang, F.; Xu, Z. H. A hierarchical Si/C nanocomposite of stable conductive network formed through thermal phase separation of asphaltenes for high-performance Li-ion batteries. Small 2022, 18, 2203102.
Cai, Y. F.; Liu, C. X.; Yu, Z. A.; Ma, W. C.; Jin, Q.; Du, R. C.; Qian, B. Y.; Jin, X. X.; Wu, H. M.; Zhang, Q. H. et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 2023, 10, 2205590.
Xiao, Z. X.; Lin, X. Q.; Zhang, C. X.; Shen, J. Q.; Zhang, R. R.; He, Z. Y.; Lin, Z. K.; Jiang, H. R.; Wei, F. Insights into the coating integrity and its effect on the electrochemical performance of core–shell structure SiO x @C composite anodes. Small Methods 2023, 7, 2201623.
Tian, Y. F.; Li, G.; Xu, D. X.; Lu, Z. Y.; Yan, M. Y.; Wan, J.; Li, J. Y.; Xu, Q.; Xin, S.; Wen, R. et al. Micrometer-sized SiMg y O x with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 2022, 34, 2200672.
Oh, M. G.; Kwak, S.; An, K.; Tran, Y. H. T.; Kang, D. G.; Park, S. J.; Lim, G.; Kim, K.; Lee, Y. S.; Song, S. W. Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery. Adv. Funct. Mater. 2023, 33, 2212890.
Pan, S. S.; Yang, L. P.; Su, P. P.; Zhang, H. T.; Zhang, S. J. Robust multiscale electron/ion transport and enhanced structural stability in SiO x semi-solid anolytes enabled by trifunctional artificial interfaces for high-performance Li-ion slurry flow batteries. Small 2022, 18, 2202139.
Im, J.; Kwon, J. D.; Kim, D. H.; Yoon, S.; Cho, K. Y. P-doped SiO x /Si/SiO x sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 2022, 6, 2101052.
Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Designing adaptive binders for microenvironment settings of silicon anode particles. Adv. Mater. 2021, 33, 2007460.
Cao, Z.; Zheng, X. Y.; Qu, Q. T.; Huang, Y. H.; Zheng, H. H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv. Mater. 2021, 33, 2103178.
Collins, G. A.; Kilian, S.; Geaney, H.; Ryan, K. M. A nanowire nest structure comprising copper silicide and silicon nanowires for lithium-ion battery anodes with high areal loading. Small 2021, 17, 2102333.
Chae, S.; Xu, Y. B.; Yi, R.; Lim, H. S.; Velickovic, D.; Li, X. L.; Li, Q. Y.; Wang, C. M.; Zhang, J. G. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv. Mater. 2021, 33, 2103095.
Ren, Y.; Xiang, L. Z.; Yin, X. C.; Xiao, R.; Zuo, P. J.; Gao, Y. Z.; Yin, G. P.; Du, C. Y. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110046.
Hernandha, R. F. H.; Rath, P. C.; Umesh, B.; Patra, J.; Huang, C. Y.; Wu, W. W.; Dong, Q. F.; Li, J.; Chang, J. K. Supercritical CO2-assisted SiO x /carbon multi-layer coating on Si anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2104135.
Su, Y. X.; Feng, X.; Zheng, R. B.; Lv, Y. Y.; Wang, Z. Y.; Zhao, Y.; Shi, L. Y.; Yuan, S. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery. Acs Nano 2021, 15, 14570–14579.
Li, Z. H.; Wu, G.; Yang, Y. J.; Wan, Z. W.; Zeng, X. M.; Yan, L. J.; Wu, S. X.; Ling, M.; Liang, C. D.; Hui, K. N. et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2201197.
Jiang, M. M.; Chen, J. L.; Zhang, Y. B.; Song, N.; Jiang, W.; Yang, J. P. Assembly: A key enabler for the construction of superior silicon-based anodes. Adv. Sci. 2022, 9, 2203162.
Moon, J.; Lee, H. C.; Jung, H.; Wakita, S.; Cho, S.; Yoon, J.; Lee, J.; Ueda, A.; Choi, B.; Lee, S. et al. Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation. Nat. Commun. 2021, 12, 2710.