For the pursuit of high energy supercapacitors, the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor (EDLC) type materials. Herein, a porous and defect-rich FexBi2−xS3 solid solution structure is firstly constructed by employing Fe-doped Bi2O2CO3 porous nanosheets as a precursor, which presents dramatically increased energy storage performance than Bi2S3 and FeS2 phase. For the optimized FexBi2−xS3 solid solution (FeBiS-60%), the Fe solute is free and random dispersed in Bi2S3 framework, which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II). Meanwhile, the FeBiS-60%, constructed by pore nanosheets that are assembled by self-supported basic nanorod units, presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance. Therefore, a high capacitance of 832.8 F·g−1 at a current density of 1 A·g−1 is achieved by the FeBiS-60% electrode. Furthermore, a fabricated Ni3S2@Co3S4 (NCS)//FeBiS-60% hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg−1 at the power density of 0.799 kW·kg−1, and ultra-long lifespan of remaining 86.7% initial capacitance after 8700 cycles.
Jha, D.; Karkaria, V. N.; Karandikar, P. B.; Desai, R. S. Statistical modeling of hybrid supercapacitor. J. Energy Storage 2022, 46, 103869.
Li, B.; Pang, H.; Xue, H. G. Fe-based phosphate nanostructures for supercapacitors. Chin. Chem. Lett. 2021, 32, 885–889.
Momeni, M. M.; Navandian, S.; Aydisheh, H. M.; Lee, B. K. Photo-assisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: A novel self-powered supercapacitor. J. Power Sources 2023, 557, 232588.
Xue, Q.; Tian, Y.; Deng, S. Z.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Liu, F.; Zhi, C. Y. LaB6 nanowires for supercapacitors. Mater. Today Energy 2018, 10, 28–33.
Wang, P.; Zhang, X. M.; Duan, W.; Teng, W.; Liu, Y. B.; Xie, Q. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 2021, 39, 1153–1158.
Wang, H.; Zhao, P. F.; Zhang, X. M.; Zhang, S.; Lu, X. L.; Qiu, Z. P.; Ren, K.; Xu, Z.; Yao, R. X.; Wei, T. et al. Holey graphene oxide-templated construction of nano nickel-based metal-organic framework for highly efficient asymmetric supercapacitor. Nano Res. 2022, 15, 9047–9056.
Li, Q. Q.; Liu, M. J.; Huang, F. Z.; Zuo, X. Q.; Wei, X.; Li, S. K.; Zhang, H. Co9S8@MnO2 core–shell defective heterostructure for High-voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem. Eng. J. 2022, 437, 135494.
Wang, Y. M.; Wu, X. L.; Han, Y. Q.; Li, T. X. Flexible supercapacitor: Overview and outlooks. J. Energy Storage 2021, 42, 103053.
Liu, T.; Yan, R. Y.; Huang, H. J.; Pan, L.; Cao, X. B.; DeMello, A.; Niederberger, M. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 2020, 30, 2004410.
Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.
Wang, X. S.; Jiang, D. B.; Jing, C.; Liu, X. Y.; Li, K. L.; Yu, M.; Qi, S.; Zhang, Y. X. Biotemplate synthesis of Fe3O4/polyaniline for supercapacitor. J. Energy Storage 2020, 30, 101554.
Yuan, X. H.; Chen, B. W.; Wu, X. W.; Mo, J.; Liu, Z. C.; Hu, Z. Y.; Liu, Z. H.; Zhou, C. J.; Yang, H. J.; Wu, Y. P. An aqueous asymmetric supercapacitor based on activated carbon and tungsten trioxide nanowire electrodes. Chin. J. Chem. 2017, 35, 61–66.
Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots modified Ti3C2T x -based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 2021, 14, 3886–3892.
Liu, S.; Xie, X.; Yang, L. Y. Analysis, modeling and implementation of a switching Bi-directional buck-boost converter based on electric vehicle hybrid energy storage for V2G system. IEEE Access 2020, 8, 65868–65879.
Levi, M. D.; Daikhin, L.; Aurbach, D.; Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochem. Commun. 2016, 67, 16–21.
Bu, R. R.; Deng, Y.; Wang, Y. L.; Zhao, Y.; Shi, Q. Q.; Zhang, Q.; Xiao, Z. Y.; Li, Y. Y.; Sun, W.; Wang, L. Bucket effect: A metal-organic framework derived high-performance FeS2/Fe2O3@S-rGO negative material for enhanced overall supercapacitor capacitance. ACS Appl. Energy Mater. 2021, 4, 11004–11013.
Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.
Lv, J. L.; Liang, T. X.; Yang, M.; Ken, S.; Hideo, M. Performance comparison of NiCo2O4 and NiCo2S4 formed on Ni foam for supercapacitor. Compos. Part B: Eng. 2017, 123, 28–33.
Naveenkumar, P.; Paruthimal Kalaignan, G. Fabrication of core–shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications. Compos. Part B: Eng. 2019, 173, 106864.
Chen, Y. X.; Jing, C.; Fu, X.; Shen, M.; Li, K. L.; Liu, X. Y.; Yao, H. C.; Zhang, Y. X.; Yao, K. X. Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chem. Eng. J. 2020, 384, 123367.
Li, J.; Wei, M.; Chu, W.; Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 2017, 316, 277–287.
Zhao, Y. H.; He, X. Y.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Li, J. Q.; Zhang, H. S.; Dong, H. X.; Zhang, M. L. et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core–shell heterostructures. Chem. Eng. J. 2018, 352, 29–38.
Han, X. Y.; Li, J. E.; Lu, J. L.; Luo, S.; Wan, J.; Li, B. X.; Hu, C. G.; Cheng, X. L. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 2021, 86, 106079.
Guo, H.; Liu, Z.; Li, H. Y.; Wu, H.; Zhang, C. J.; Yang, J. L.; Chen, X. H. Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Appl. Phys. A 2017, 123, 467.
Chen, Z. D.; Liu, K.; Liu, S.; Xia, L.; Fu, J. J.; Zhang, X. M.; Zhang, C. C.; Gao, B. Porous Active carbon layer modified graphene for high-performance supercapacitor. Electrochim. Acta 2017, 237, 102–108.
Lv, X. R.; Chen, L.; Min, X. Q.; Lin, X. Y.; Ni, Y. N. Flower-like MnNi2O4-MnNi2S4 core@shell composite electrode as battery-type supercapacitors. J. Energy Storage 2022, 55, 105792.
Zhou, J.; Dai, S. M.; Li, Y. N.; Han, F. F.; Yuan, Y.; Tang, J.; Tang, W. H. Earth-abundant nanotubes with layered assembly for battery-type supercapacitors. Chem. Eng. J. 2018, 350, 835–843.
Yin, B. Y.; Hao, L.; Wei, T.; Wang, C.; Zhu, B.; Li, X. G.; Yang, Q. G. Revealing bulk reaction kinetics of battery-like electrode for pseudocapacitor with ultra-high rate performance. Chem. Eng. J. 2022, 450, 138224.
Johnson William, J.; Manohara Babu, I.; Muralidharan, G. Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chem. Eng. J. 2021, 422, 130058.
Xu, Z. Y.; Du, C. C.; Yang, H. K.; Huang, J. L.; Zhang, X. H.; Chen, J. H. NiCoP@CoS tree-like core–shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors. Chem. Eng. J. 2021, 421, 127871.
Kim, M.; Wang, C. H.; Earnshaw, J.; Park, T.; Amiralian, N.; Ashok, A.; Na, J. B.; Han, M. S.; Rowan, A. E.; Li, J. S. et al. Correction: Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. J. Mater. Chem. A 2023, 11, 1511.
Xiao, T.; Chen, F.; Zhou, W. J.; Che, P. C.; Wang, S. L.; Chen, X. L.; Tan, X. Y.; Xiang, P.; Jiang, L. H.; Chen, X. B. Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chem. Eng. J. 2019, 378, 122162.
Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Ali, M.; Seo, Y. S.; Song, W.; An, K. S.; Kim, H. S.; Chun, S. H. et al. MoS2@X2C ( X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 2021, 421, 127843.
Mane, S. A.; Kashale, A. A.; Kamble, G. P.; Kolekar, S. S.; Dhas, S. D.; Patil, M. D.; Moholkar, A. V.; Sathe, B. R.; Ghule, A. V. Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J. Alloys Compd. 2022, 926, 166722.
Sridhar, V.; Park, H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J. Alloys Compd. 2018, 732, 799–805.
Zhang, J. W.; Zhu, L. B.; Jia, H. T.; Wei, K. X.; Wen, L. X. Microreactor facilitated preparation and Ni-doping of MnO2 nanoparticles for supercapacitors. J. Alloys Compd. 2021, 889, 161772.
Yang, J. J.; Russell, J. C.; Tao, S. S.; Lessio, M.; Wang, F. F.; Hartnett, A. C.; Peurifoy, S. R.; Doud, E. A.; O’Brien, E. S.; Gadjieva, N. et al. Superatomic solid solutions. Nat. Chem. 2021, 13, 607–613.
Denis, D. K.; Sun, X.; Zhang, J. Y.; Wang, Y. Y.; Hou, L. R.; Li, J.; Yuan, C. Z. Solid solution engineering of Co-Ni-based ternary molybdate nanorods toward hybrid supercapacitors and lithium-ion batteries as high-performance electrodes. ACS Appl. Energy Mater. 2020, 3, 3955–3965.
Zhang, Q.; Shi, Q. Q.; Yang, Y.; Zang, Q.; Xiao, Z. Y.; Zhang, X. H.; Wang, L. 2D nanosheet/3D cubic framework Ni-Co sulfides for improved supercapacitor performance via structural engineering. Dalton Trans. 2020, 49, 8162–8168
Liu, C. Y.; Wang, L.; Xia, Z. P.; Chen, R. X.; Wang, H. L.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099.
Chen, W. M.; Wang, X.; Feizbakhshan, M.; Liu, C. Z.; Hong, S.; Yang, P.; Zhou, X. Y. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 540, 524–534.
Liu, Q.; Hong, X. D.; Zhang, X.; Wang, W.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 356, 985–993.
Zhu, Y. C.; Ye, X. K.; Jiang, H. D.; Xia, J. X.; Yue, Z. Y.; Wang, L. H.; Wan, Z. Q.; Jia, C. Y.; Yao, X. J. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power Sources 2020, 453, 227851.
Nguyen, N. T.; Ozkan, S.; Hwang, I.; Zhou, X. M.; Schmuki, P. Spaced TiO2 nanotube arrays allow for a high performance hierarchical supercapacitor structure. J. Mater. Chem. A 2017, 5, 1895–1901.
Cheng, Z. J.; Ren, Z. Y.; Ye, W. T.; Li, G.; Huang, X. H.; Lin, Y. Q.; Xiong, F. B.; Zhang, H. Y. Synthesis of hierarchically structured MnMoO4·H2O/Ni3S2 nanocomposites on Ni foam for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 56, 105941.
Zhou, Y.; Cheng, X. Y.; Huang, F.; Sha, Z.; Han, Z. J.; Chen, J. Y.; Yang, W. M.; Yu, Y. Y.; Zhang, J.; Peng, S. H. et al. Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon 2021, 172, 272–282.
Pinto, D.; Anasori, B.; Avireddy, H.; Shuck, C. E.; Hantanasirisakul, K.; Deysher, G.; Morante, J. R.; Porzio, W.; Alshareef, H. N.; Gogotsi, Y. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J. Mater. Chem. A 2020, 8, 8957–8968.
Chen, X.; Tao, H. J.; Jiang, Y. H.; Li, S. S.; Liu, Y. X.; Xie, K.; Wang, Y. Q. P-doped S vacancy-rich NiCo2S4 hollow microspheres for high-performance supercapacitors. J. Energy Storage 2023, 68, 107721.
Wang, Q. F.; Qu, Z. T.; Chen, S. H.; Zhang, D. H. Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 624, 385–393.
Liu, R. Q.; Xu, S. S.; Shao, X. X.; Wen, Y.; Shi, X. R.; Huang, L. P.; Hong, M.; Hu, J.; Yang, Z. Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 47717–47727.
Zhang, S. M.; Wang, X. H.; Li, Y.; Zhang, Y. X.; Hu, Q.; Hua, X. H.; Liu, G.; Xie, E. Q.; Zhang, Z. X. Moderate oxygen-deficient Fe(III) oxide nanoplates for high performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 565, 458–464.
Ismail, K. B. M.; Kumar, M. A.; Jayavel, R.; Arivanandhan, M.; Ismail, M. A. M. Enhanced electrochemical performance of the MoS2/Bi2S3 nanocomposite-based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC Adv. 2023, 13, 24272–24285.
Kumar, D. R.; Nguyen, T. T.; Lamiel, C.; Shim, J. J. Layered 2-D Bi2Se3 nanosheets intercalated by Ni(OH)2 and their supercapacitor performance. Mater. Lett. 2016, 165, 257–262.
Liu, L.; Yan, Y.; Cai, Z. H.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.
Qiu, Y. F.; Fan, H. B.; Chang, X. Y.; Dang, H. F.; Luo, Q.; Cheng, Z. Y. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl. Surf. Sci. 2018, 434, 16–20.
Zhao, C. J.; Shao, X. X.; Zhu, Z. Q.; Zhao, C. H.; Qian, X. Z. One-pot hydrothermal synthesis of RGO/FeS composite on Fe foil for high performance supercapacitors. Electrochim. Acta 2017, 246, 497–506.
Xie, J. J.; Ma, R.; Fang, H. B.; Shi, H. R.; Liu, D. X. MIL-101(Fe)-attached graphene oxide for high-performance supercapacitors with sound stability in acid electrolyte. Cryst. Growth Des. 2022, 22, 2997–3006.
Gao, Q.; Wang, J. X.; Ke, B.; Wang, J. F.; Li, Y. Q. Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes. Ceram. Int. 2018, 44, 18770–18775.
Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta, B. K.; Kahol, P. Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J. Chem. 2014, 38, 4344–4350.
Iqbal, M. Z.; Amjad, N.; Siddique, S.; Ali, R.; Aziz, U.; Aftab, S.; Alzaid, M. Exploring the synergy of binder free MoWS2@Ag as electrode materials for hybrid supercapacitors. J. Energy Storage 2022, 56, 105925.
Ali, M. S.; Layek, R.; Ali, M. S.; Tudu, S.; Dutta, K.; Gangopadhyay, B.; Karmakar, D.; Mallik, A.; Panda, S.; Maiti, A. et al. Ultrahigh energy density solid state supercapacitor based on metal halide perovskite nanocrystal electrodes: Real-life applications. J. Energy Storage 2023, 65, 107215.
Li, C. Y.; Wang, X. K.; Ma, D. G.; Yan, Y.; Huo, P. W.; Yang, Q. J. Interlayer nano-dots induced high-rate supercapacitors. Adv. Sci. 2023, 10, 2301398.
Chen, J. Y.; Nakate, U. T.; Nguyen, Q. T.; Park, S. Electrodeposited Bi(OH)3@Mo(OH)4 nanostructured electrode for high-performance supercapacitor application. Ceram. Int. 2022, 48, 22417–22425.
Shao, X. X.; Zhu, Z. Q.; Zhao, C. J.; Zhao, C. H.; Qian, X. Z. Hierarchical FeS/RGO/FeS@Fe foil as high-performance negative electrode for asymmetric supercapacitors. Inorg. Chem. Front. 2018, 5, 1912–1922.
Yang, S. J.; Qian, L. B.; Ping, Y. J.; Zhang, H. L.; Li, J. J.; Xiong, B. Y.; Fang, P. F.; He, C. Q. Electrochemical performance of Bi2O3 supercapacitors improved by surface vacancy defects. Ceram. Int. 2021, 47, 8290–8299.
Khalafallah, D.; Zhi, M. J.; Hong, Z. L. Bi-Fe chalcogenides anchored carbon matrix and structured core–shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. J. Colloid Interface Sci. 2022, 606, 1352–1363.
Yan, W.; Zhang, Y.; Zeng, T.; Zhang, Y. Y.; Wan, Q. J.; Yang, N. J. A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide. J. Energy Storage 2022, 52, 104899.
Vattikuti, S. V. P.; Zeng, J.; Shim, J.; Lee, D. S.; Devarayapalli, K. C. Facile synthesis of ultrathin Bi(OH)SO4·H2O nanosheets and battery-like electrode for symmetric supercapacitors. J. Alloys Compd. 2023, 936, 168186.
Zhu, P.; Xie, L. X.; Xiao, X. B.; Yang, H.; Jiang, J. L. Orthorhombic (Co,Fe)Se2/Ti2C MXene porous microspheres for high-performance supercapacitors. J. Alloys Compd. 2022, 924, 166586.
Zhao, Y. X.; Feng, Z. H.; Guo, Z. C.; Mu, J. P.; Che, H. W.; Zhang, Z. X.; Tian, T.; Xiaoliang, Z.; Li, S. M.; Wang, Y. M. et al. Fe incorporated ternary layered double hydroxides with remarkably improved electrochemical performance towards asymmetric supercapacitors. Ceram. Int. 2022, 48, 27369–27378.
Lu, W.; Yang, Y.; Zhang, T. Y.; Ma, L. K. X.; Luo, X. T.; Huang, C. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 2021, 590, 226–237.