AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Robust hybrid bismuth perovskites as potential photocatalysts for overall water splitting

Antonio J. Chacón-García1Herme G. Baldovi2Artem A. Babaryk1Antonio Rodríguez-Diéguez3Sergio Navalón2Yolanda Pérez1,4( )Hermenegildo García5( )Patricia Horcajada1( )
Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón y Cajal 3, 28935 Móstoles, Madrid, Spain
Departamento de Química, Universitat Politècnica de València, 46022 València, Spain
Departamento Química Inorgánica, Universidad de Granada, 1807, Granada, Spain
Departamento de Biología y Geología, Física y Química Inorgánica. ESCET. Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
Instituto de tecnología química CSIC-UPV, Universitat Politècnica de València (UPV), 46022, Spain
Show Author Information

Graphical Abstract

Three novel air- and water-stable hybrid bismuth perovskites have been synthesized and shown efficient photocatalytic activity for overall water splitting reaction.

Abstract

Organic–inorganic hybrid perovskites have gained great attention as promising photocatalysts for hydrogen generation. However, due to their poor stability in water, the use of aqueous hydrohalic acid solutions is specifically required for an efficient hydrogen evolution. Herein, three novel photoactive lead-free hybrid perovskites based on bismuth and triazolium cations (denoted as IEF-15, IEF-16, and IEF-17 (IEF stands for IMDEA energy frameworks)) were synthesized and fully characterized (structural, compositional, optical, etc.). Further, these solids were proposed as photocatalysts for the challenging gas phase overall water splitting (OWS) reaction. Accordingly, IEF-16 thin films exhibited a remarkable photocatalytic activity in both H2 and O2 evolution, as a consequence of its appropriate bandgap and energy-band alignment, achieving hydrogen evolution rates of 846 and 360 μmolgH21 after 24 h under ultraviolet–visible (UV–vis) irradiation or simulated solar irradiation, respectively. This study additionally highlights the remarkable structural and photochemical stability of IEF-16 under different operational conditions (i.e. water volume, irradiation and temperature), paving the way for green hydrogen production from OWS using perovskite-based photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_6254_MOESM1_ESM.pdf (2.5 MB)

References

[1]
European Comission. 2050 long-term strategy [Online]. https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed Oct 9, 2023).
[2]

Hosseini, S. E.; Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866.

[3]

Guerra, O. J.; Eichman, J.; Kurtz, J.; Hodge, B. M. Cost competitiveness of electrolytic hydrogen. Joule 2019, 3, 2425–2443.

[4]

Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35, 16403–16415.

[5]

Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

[6]

Corredor, J.; Rivero, M. J.; Rangel, C. M.; Gloaguen, F.; Ortiz, I. Comprehensive review and future perspectives on the photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2019, 94, 3049–3063.

[7]

Cao, S.; Piao, L. Y.; Chen, X. B. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70.

[8]

Zhang, H. L.; Ji, X.; Yao, H. Y.; Fan, Q. H.; Yu, B. W.; Li, J. S. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 2022, 233, 421–434.

[9]
Best research-cell efficiencies. NREL 2023 [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Oct 9, 2023).
[10]

Chin, X. Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 2015, 6, 7383.

[11]

Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.

[12]

Fu, X. W.; Jiao, S. L.; Dong, N.; Lian, G.; Zhao, T. Y.; Lv, S.; Wang, Q. L.; Cui, D. L. A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Adv. 2018, 8, 390–395.

[13]

Zhao, Z. J.; Wu, J. J.; Zheng, Y. Z.; Li, N.; Li. X. T.; Ye, Z. L.; Lu, S. Y.; Tao, X.; Chen, C. C. Stable hybrid perovskite MAPb(I1− x Br x )3 for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 253, 41–48.

[14]

Ren, M.; Qian, X. F.; Chen, Y. T.; Wang, T. F.; Zhao, Y. X. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 2022, 426, 127848.

[15]

Jin, Z. X.; Zhang, Z.; Xiu, J. W.; Song, H. S.; Gatti, T.; He, Z. B. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges. J. Mater. Chem. A 2020, 8, 16166–16188.

[16]

Rajput, P. K.; Poonia, A. K.; Mukherjee, S.; Sheikh, T.; Shrivastava, M.; Adarsh, K. V.; Nag, A. Chiral methylbenzylammonium bismuth iodide with zero-dimensional perovskite derivative structure. J. Phys. Chem. C 2022, 126, 9889–9897.

[17]

Li, M. Q.; Hu, Y. Q.; Bi, L. Y.; Zhang, H. L.; Wang, Y. Y.; Zheng, Y. Z. Structure tunable organic–inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material. Chem. Mater. 2017, 29, 5463–5467.

[18]

Zhuang, R. Z.; Wang, X. J.; Ma, W. B.; Wu, Y. H.; Chen, X.; Tang, L. H.; Zhu, H. M.; Liu, J. Y.; Wu, L. L.; Zhou, W. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 2019, 13, 602–608.

[19]

Zhao, H.; Li, Y. X.; Zhang, B.; Xu, T.; Wang, C. Y. PtI x /[(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy 2018, 50, 665–674.

[20]

Guo, Y. M.; Liu, G. N.; Li, Z. X.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Stable lead-free (CH3NH3)3Bi2I9 perovskite for photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 2019, 7, 15080–15085.

[21]

Zhao, H.; Chordiya, K.; Leukkunen, P.; Popov, A.; Kahaly, M. U.; Kordas K.; Ojala, S. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 2021, 14, 1116–1125.

[22]

Li, Y. L.; Zhuang, C. Q.; Qiu, S.; Gao, J. F.; Zhou, Q.; Sun, Z. C.; Kang, Z. H.; Han, X. D. Cs-Cu-Cl perovskite quantum dots for photocatalytic H2 evolution with super-high stability. Appl. Catal. B: Environ. 2023, 337, 122881.

[23]

Liu, X. L.; Zhang, Q. Q.; Zhao, S. L.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B.; Wang, P. Integrating mixed halide perovskite photocatalytic HI splitting and electrocatalysis into a loop for efficient and robust pure water splitting. Adv. Mater. 2023, 35, 2208915.

[24]

Wu, Y. Q.; Wu, Q.; Zhang, Q. Q.; Lou, Z. Z.; Liu, K. F.; Ma, Y. D.; Wang, Z. Y.; Zheng, Z. K.; Cheng, H. F.; Liu, Y. Y. et al. An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ. Sci. 2022, 15, 1271–1281.

[25]

García, T.; García-Aboal, R.; Albero, J.; Atienzar, P.; García, H. Vapor-phase photocatalytic overall water splitting using hybrid methylammonium copper and lead perovskites. Nanomaterials 2020, 10, 960.

[26]
Bruker Apex2; Bruker AXS Inc.: Madison, USA, 2004.
[27]
Sheldrick GM; SADABS, Software for Empirical Absorption Correction; Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany, 1996.
[28]

Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119.

[29]
Sheldrick GM; SHELX-2014, Program for Crystal Structure Refinement; Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany, 2014.
[30]

Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838.

[31]

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.

[32]

Salcedo-Abraira, P.; Serrano-Nieto, R.; Biglione, C.; Cabrero-Antonino, M.; Vilela, S. M. F.; Babaryk, A. A.; Tilve-Martínez, D.; Rodriguez-Diéguez, A.; Navalón, S.; García, H. et al. Two Cu-based phosphonate metal-organic frameworks as efficient water-splitting photocatalysts. Chem. Mater. 2023, 35, 4211–4219.

[33]

Oswald, I. W. H.; Ahn, H.; Neilson, J. R. Influence of organic cation planarity on structural templating in hybrid metal-halides. Dalton Trans. 2019, 48, 16340–16349.

[34]

Shestimerova, T. A.; Mironov, A. V.; Bykov, M. A.; Starichenkova, E. D.; Kuznetsov, A. N.; Grigorieva, A. V.; Shevelkov, A. V. Reversal topotactic removal of acetone from (HMTH)2BiI5·(CH3)2C=O accompanied by rearrangement of weak bonds, from 1D to 3D patterns. Cryst. Growth Des. 2020, 20, 87–94.

[35]

Li, T. Y.; Hu, Y.; Morrison, C. A.; Wu, W. J.; Han, H. W.; Robertson, N. Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustain. Energy Fuels 2017, 1, 308–316.

[36]

Skorokhod, A.; Mercier, N.; Allain, M.; Manceau, M.; Katan, C.; Kepenekian, M. From zero- to one-dimensional, opportunities and caveats of hybrid iodobismuthates for optoelectronic applications. Inorg. Chem. 2021, 60, 17123–17131.

[37]

Ma, Z. J.; Peng, S.; Wu, Y. H.; Fang, X.; Chen, X.; Jia, X. G.; Zhang, K. Z.; Yuan, N. Y.; Ding, J. N.; Dai, N. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Phys. B: Condens. Matter 2017, 526, 136–142.

[38]

Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qui, Z.; Kim, J.; Watson, T.; Tsoi, W. C. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624.

[39]

Babaryk, A. A.; Pérez, Y.; Martínez, M.; Mosquera, M. E. G.; Zehender, M. H.; Svatek, S. A.; Antolín, E.; Horcajada, P. Reversible dehydration-hydration process in stable bismuth-based hybrid perovskites. J. Mater. Chem. C 2021, 9, 11358–11367.

[40]

Albero, J.; Asiri, A. M.; García, H. Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 2016, 4, 4353–4364.

[41]

Castelli, I. E.; García-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2014, 2, 081514.

[42]

Kim, S. Y.; Yun, Y.; Shin, S.; Lee, J. H.; Heo, Y. W.; Lee, S. Wide range tuning of band gap energy of A3B2X9 perovskite-like halides. Scr. Mater. 2019, 166, 107–111.

[43]

Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

[44]

Zhang, H. Y.; Wei, Z. H.; Li, P. F.; Tang, Y. Y.; Liao, W. Q.; Ye, H. Y.; Cai, H.; Xiong, R. G. The narrowest band gap ever observed in molecular ferroelectrics: Hexane-1, 6-diammonium pentaiodobismuth(III). Angew. Chem., Int. Ed. 2018, 57, 526–530.

[45]

Tao, K. W.; Li, Y. B.; Ji, C. M.; Liu, X. T.; Wu, Z. Y.; Han, S. G.; Sun, Z. H.; Luo, J. H. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem. Mater. 2019, 31, 5927–5932.

[46]

Fan, Z.; Xiao, H.; Wang, Y. L.; Zhao, Z. P.; Lin, Z. Y.; Cheng, H. C.; Lee, S. J.; Wang, G. M.; Feng, Z. Y.; Goddard III, W. A. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 2017, 1, 548–562.

[47]

Kotov, V. Y.; Ilyukhin, A. B.; Korlyukov, A. A.; Smol’yakov, A. F.; Kozyukhin, S. A. Black hybrid iodobismuthate containing linear anionic chains. New J. Chem. 2018, 42, 6354–6363.

[48]

García-Fernández, A.; Marcos-Cives, I.; Platas-Iglesias, C.; Castro-García, S.; Vázquez-García, D.; Fernández, A.; Sánchez-Andújar, M. Diimidazolium halobismuthates [Dim]2[Bi2X10] (X = Cl, Br, or I): A new class of thermochromic and photoluminescent materials. Inorg. Chem. 2018, 57, 7655–7664.

[49]

Dennington, A. J.; Weller, M. T. Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors. Dalton Trans. 2016, 45, 17974–17979.

[50]

Hoye, R. L. Z.; Brandt, R. E.; Osherov, A.; Stevanović, V.; Stranks, S. D.; Wilson, M. W. B.; Kim, H.; Akey, A. J.; Perkins, J. D.; Kurchin, R. C. et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic–inorganic solar absorber. Chem.—Eur. J. 2016, 22, 2605–2610.

[51]

Fu, W. F.; Ricciardulli, A. G.; Akkerman, Q. A.; John, R. A.; Tavakoli, M. M.; Essig, S.; Kovalenko, M. V.; Saliba, M. Stability of perovskite materials and devices. Mater. Today 2022, 58, 275–296

[52]

Li, X. L.; Gao, L. L.; Ding, B.; Chu, Q. Q.; Li, Z.; Yang, G. H. (C6H5NH3)BiI4: A lead-free perovskite with > 330 days humidity stability for optoelectronic applications. J. Mater. Chem. A 2019, 7, 15722–15730.

[53]

Han, L. Y.; Wang, P.; Wu, Q.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Design the π-stacking type of perovskite-like iodobismuthates to enhance their optoelectronic properties. J. Mol. Struct. 2022, 1247, 131332.

[54]

Ji, F. X.; Klarbring, J.; Wang, F.; Ning, W. H.; Wang, L. Q.; Yin, C. Y.; Figueroa, J. S. M.; Christensen, C. K.; Etter, M.; Ederth, T. et al. Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap. Angew. Chem., Int. Ed. 2020, 59, 15191–15194.

[55]

Miodyńska, M.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Bi-based halide perovskites: Stability and opportunities in the photocatalytic approach for hydrogen evolution. Catal. Commun. 2023, 177, 106656.

[56]

Ju, D. X.; Zheng, X. P.; Liu, J. L.; Chen, Y.; Zhang, J.; Cao, B. Q.; Xiao, H.; Mohammed, O. F.; Bakr, O. M.; Tao, X. T. Reversible band gap narrowing of Sn-based hybrid perovskite single crystal with excellent phase stability. Angew. Chem., Int. Ed. 2018, 57, 14868–14872.

Nano Research
Pages 4593-4601
Cite this article:
Chacón-García AJ, Baldovi HG, Babaryk AA, et al. Robust hybrid bismuth perovskites as potential photocatalysts for overall water splitting. Nano Research, 2024, 17(5): 4593-4601. https://doi.org/10.1007/s12274-023-6254-1
Topics:

644

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 July 2023
Revised: 09 October 2023
Accepted: 09 October 2023
Published: 24 November 2023
© Tsinghua University Press 2023
Return