Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Organic–inorganic hybrid perovskites have gained great attention as promising photocatalysts for hydrogen generation. However, due to their poor stability in water, the use of aqueous hydrohalic acid solutions is specifically required for an efficient hydrogen evolution. Herein, three novel photoactive lead-free hybrid perovskites based on bismuth and triazolium cations (denoted as IEF-15, IEF-16, and IEF-17 (IEF stands for IMDEA energy frameworks)) were synthesized and fully characterized (structural, compositional, optical, etc.). Further, these solids were proposed as photocatalysts for the challenging gas phase overall water splitting (OWS) reaction. Accordingly, IEF-16 thin films exhibited a remarkable photocatalytic activity in both H2 and O2 evolution, as a consequence of its appropriate bandgap and energy-band alignment, achieving hydrogen evolution rates of 846 and 360
Hosseini, S. E.; Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866.
Guerra, O. J.; Eichman, J.; Kurtz, J.; Hodge, B. M. Cost competitiveness of electrolytic hydrogen. Joule 2019, 3, 2425–2443.
Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35, 16403–16415.
Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.
Corredor, J.; Rivero, M. J.; Rangel, C. M.; Gloaguen, F.; Ortiz, I. Comprehensive review and future perspectives on the photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2019, 94, 3049–3063.
Cao, S.; Piao, L. Y.; Chen, X. B. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70.
Zhang, H. L.; Ji, X.; Yao, H. Y.; Fan, Q. H.; Yu, B. W.; Li, J. S. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 2022, 233, 421–434.
Chin, X. Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 2015, 6, 7383.
Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.
Fu, X. W.; Jiao, S. L.; Dong, N.; Lian, G.; Zhao, T. Y.; Lv, S.; Wang, Q. L.; Cui, D. L. A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Adv. 2018, 8, 390–395.
Zhao, Z. J.; Wu, J. J.; Zheng, Y. Z.; Li, N.; Li. X. T.; Ye, Z. L.; Lu, S. Y.; Tao, X.; Chen, C. C. Stable hybrid perovskite MAPb(I1− x Br x )3 for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 253, 41–48.
Ren, M.; Qian, X. F.; Chen, Y. T.; Wang, T. F.; Zhao, Y. X. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 2022, 426, 127848.
Jin, Z. X.; Zhang, Z.; Xiu, J. W.; Song, H. S.; Gatti, T.; He, Z. B. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges. J. Mater. Chem. A 2020, 8, 16166–16188.
Rajput, P. K.; Poonia, A. K.; Mukherjee, S.; Sheikh, T.; Shrivastava, M.; Adarsh, K. V.; Nag, A. Chiral methylbenzylammonium bismuth iodide with zero-dimensional perovskite derivative structure. J. Phys. Chem. C 2022, 126, 9889–9897.
Li, M. Q.; Hu, Y. Q.; Bi, L. Y.; Zhang, H. L.; Wang, Y. Y.; Zheng, Y. Z. Structure tunable organic–inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material. Chem. Mater. 2017, 29, 5463–5467.
Zhuang, R. Z.; Wang, X. J.; Ma, W. B.; Wu, Y. H.; Chen, X.; Tang, L. H.; Zhu, H. M.; Liu, J. Y.; Wu, L. L.; Zhou, W. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 2019, 13, 602–608.
Zhao, H.; Li, Y. X.; Zhang, B.; Xu, T.; Wang, C. Y. PtI x /[(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy 2018, 50, 665–674.
Guo, Y. M.; Liu, G. N.; Li, Z. X.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Stable lead-free (CH3NH3)3Bi2I9 perovskite for photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 2019, 7, 15080–15085.
Zhao, H.; Chordiya, K.; Leukkunen, P.; Popov, A.; Kahaly, M. U.; Kordas K.; Ojala, S. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 2021, 14, 1116–1125.
Li, Y. L.; Zhuang, C. Q.; Qiu, S.; Gao, J. F.; Zhou, Q.; Sun, Z. C.; Kang, Z. H.; Han, X. D. Cs-Cu-Cl perovskite quantum dots for photocatalytic H2 evolution with super-high stability. Appl. Catal. B: Environ. 2023, 337, 122881.
Liu, X. L.; Zhang, Q. Q.; Zhao, S. L.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B.; Wang, P. Integrating mixed halide perovskite photocatalytic HI splitting and electrocatalysis into a loop for efficient and robust pure water splitting. Adv. Mater. 2023, 35, 2208915.
Wu, Y. Q.; Wu, Q.; Zhang, Q. Q.; Lou, Z. Z.; Liu, K. F.; Ma, Y. D.; Wang, Z. Y.; Zheng, Z. K.; Cheng, H. F.; Liu, Y. Y. et al. An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ. Sci. 2022, 15, 1271–1281.
García, T.; García-Aboal, R.; Albero, J.; Atienzar, P.; García, H. Vapor-phase photocatalytic overall water splitting using hybrid methylammonium copper and lead perovskites. Nanomaterials 2020, 10, 960.
Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119.
Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838.
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
Salcedo-Abraira, P.; Serrano-Nieto, R.; Biglione, C.; Cabrero-Antonino, M.; Vilela, S. M. F.; Babaryk, A. A.; Tilve-Martínez, D.; Rodriguez-Diéguez, A.; Navalón, S.; García, H. et al. Two Cu-based phosphonate metal-organic frameworks as efficient water-splitting photocatalysts. Chem. Mater. 2023, 35, 4211–4219.
Oswald, I. W. H.; Ahn, H.; Neilson, J. R. Influence of organic cation planarity on structural templating in hybrid metal-halides. Dalton Trans. 2019, 48, 16340–16349.
Shestimerova, T. A.; Mironov, A. V.; Bykov, M. A.; Starichenkova, E. D.; Kuznetsov, A. N.; Grigorieva, A. V.; Shevelkov, A. V. Reversal topotactic removal of acetone from (HMTH)2BiI5·(CH3)2C=O accompanied by rearrangement of weak bonds, from 1D to 3D patterns. Cryst. Growth Des. 2020, 20, 87–94.
Li, T. Y.; Hu, Y.; Morrison, C. A.; Wu, W. J.; Han, H. W.; Robertson, N. Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustain. Energy Fuels 2017, 1, 308–316.
Skorokhod, A.; Mercier, N.; Allain, M.; Manceau, M.; Katan, C.; Kepenekian, M. From zero- to one-dimensional, opportunities and caveats of hybrid iodobismuthates for optoelectronic applications. Inorg. Chem. 2021, 60, 17123–17131.
Ma, Z. J.; Peng, S.; Wu, Y. H.; Fang, X.; Chen, X.; Jia, X. G.; Zhang, K. Z.; Yuan, N. Y.; Ding, J. N.; Dai, N. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Phys. B: Condens. Matter 2017, 526, 136–142.
Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qui, Z.; Kim, J.; Watson, T.; Tsoi, W. C. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624.
Babaryk, A. A.; Pérez, Y.; Martínez, M.; Mosquera, M. E. G.; Zehender, M. H.; Svatek, S. A.; Antolín, E.; Horcajada, P. Reversible dehydration-hydration process in stable bismuth-based hybrid perovskites. J. Mater. Chem. C 2021, 9, 11358–11367.
Albero, J.; Asiri, A. M.; García, H. Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 2016, 4, 4353–4364.
Castelli, I. E.; García-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2014, 2, 081514.
Kim, S. Y.; Yun, Y.; Shin, S.; Lee, J. H.; Heo, Y. W.; Lee, S. Wide range tuning of band gap energy of A3B2X9 perovskite-like halides. Scr. Mater. 2019, 166, 107–111.
Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.
Zhang, H. Y.; Wei, Z. H.; Li, P. F.; Tang, Y. Y.; Liao, W. Q.; Ye, H. Y.; Cai, H.; Xiong, R. G. The narrowest band gap ever observed in molecular ferroelectrics: Hexane-1, 6-diammonium pentaiodobismuth(III). Angew. Chem., Int. Ed. 2018, 57, 526–530.
Tao, K. W.; Li, Y. B.; Ji, C. M.; Liu, X. T.; Wu, Z. Y.; Han, S. G.; Sun, Z. H.; Luo, J. H. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem. Mater. 2019, 31, 5927–5932.
Fan, Z.; Xiao, H.; Wang, Y. L.; Zhao, Z. P.; Lin, Z. Y.; Cheng, H. C.; Lee, S. J.; Wang, G. M.; Feng, Z. Y.; Goddard III, W. A. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 2017, 1, 548–562.
Kotov, V. Y.; Ilyukhin, A. B.; Korlyukov, A. A.; Smol’yakov, A. F.; Kozyukhin, S. A. Black hybrid iodobismuthate containing linear anionic chains. New J. Chem. 2018, 42, 6354–6363.
García-Fernández, A.; Marcos-Cives, I.; Platas-Iglesias, C.; Castro-García, S.; Vázquez-García, D.; Fernández, A.; Sánchez-Andújar, M. Diimidazolium halobismuthates [Dim]2[Bi2X10] (X = Cl−, Br−, or I−): A new class of thermochromic and photoluminescent materials. Inorg. Chem. 2018, 57, 7655–7664.
Dennington, A. J.; Weller, M. T. Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors. Dalton Trans. 2016, 45, 17974–17979.
Hoye, R. L. Z.; Brandt, R. E.; Osherov, A.; Stevanović, V.; Stranks, S. D.; Wilson, M. W. B.; Kim, H.; Akey, A. J.; Perkins, J. D.; Kurchin, R. C. et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic–inorganic solar absorber. Chem.—Eur. J. 2016, 22, 2605–2610.
Fu, W. F.; Ricciardulli, A. G.; Akkerman, Q. A.; John, R. A.; Tavakoli, M. M.; Essig, S.; Kovalenko, M. V.; Saliba, M. Stability of perovskite materials and devices. Mater. Today 2022, 58, 275–296
Li, X. L.; Gao, L. L.; Ding, B.; Chu, Q. Q.; Li, Z.; Yang, G. H. (C6H5NH3)BiI4: A lead-free perovskite with > 330 days humidity stability for optoelectronic applications. J. Mater. Chem. A 2019, 7, 15722–15730.
Han, L. Y.; Wang, P.; Wu, Q.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Design the π-stacking type of perovskite-like iodobismuthates to enhance their optoelectronic properties. J. Mol. Struct. 2022, 1247, 131332.
Ji, F. X.; Klarbring, J.; Wang, F.; Ning, W. H.; Wang, L. Q.; Yin, C. Y.; Figueroa, J. S. M.; Christensen, C. K.; Etter, M.; Ederth, T. et al. Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap. Angew. Chem., Int. Ed. 2020, 59, 15191–15194.
Miodyńska, M.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Bi-based halide perovskites: Stability and opportunities in the photocatalytic approach for hydrogen evolution. Catal. Commun. 2023, 177, 106656.
Ju, D. X.; Zheng, X. P.; Liu, J. L.; Chen, Y.; Zhang, J.; Cao, B. Q.; Xiao, H.; Mohammed, O. F.; Bakr, O. M.; Tao, X. T. Reversible band gap narrowing of Sn-based hybrid perovskite single crystal with excellent phase stability. Angew. Chem., Int. Ed. 2018, 57, 14868–14872.