AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Carbon nanotubes as outstanding targets for laser-driven particle acceleration

Wenjun Ma1,2,3( )
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
Beijing Laser Acceleration Innovation Center, Beijing 101400, China
Institute of Guangdong Laser Plasma Technology, Guangzhou 510540, China
Show Author Information

Graphical Abstract

Laser-irradiated macroscale assemble of carbon nanotubes can generate high-energy electrons, ions, and X/γ-ray radiations that used to be achieved only by large accelerators. This paper reviews the advances in exploiting carbon nanotubes as outstanding targets for laser-driven particle acceleration in memory of Prof. Sishen Xie.

Abstract

Under the irradiation of ultraintense laser pulses, targets made of gas, solid, or artificial materials can generate high-energy electrons, ions, and X-rays comparable to conventional accelerators or national light source facilities. Designing and creating high-performance targets are the core problems for laser acceleration. Nanotechnology and nanomaterials can help to build ideal targets that do not exist in nature. This paper reviews the advances in exploiting carbon nanotubes as outstanding targets for laser-driven particle acceleration in memory of Prof. Sishen Xie, the inventor of the fabrication method. We hope that the successful implementation of such targets in enhanced ion acceleration, high-efficiency electron acceleration, and brilliant X-ray generation could attract more interdiscipline interests and promote the development of this field.

References

[1]

Snavely, R. A.; Key, M. H.; Hatchett, S. P.; Cowan, T. E.; Roth, M.; Phillips, T. W.; Stoyer, M. A.; Henry, E. A.; Sangster, T. C.; Singh, M. S. et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 2000, 85, 2945–2948.

[2]

Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.; Thomas, A. G. R.; Collier, J. L.; Dangor, A. E.; Divall, E. J.; Foster, P. S.; Gallacher, J. G.; Hooker, C. J. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 2004, 431, 535–538.

[3]

Geddes, C. G. R.; Toth, C.; van Tilborg, J.; Esarey, E.; Schroeder, C. B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W. P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004, 431, 538–541.

[4]

Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J. P.; Burgy, F.; Malka, V. A laser-plasma accelerator producing monoenergetic electron beams. Nature 2004, 431, 541–544.

[5]

Mourou, G. A.; Tajima, T.; Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371.

[6]

Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T. C. H.; Steinke, S.; Bin, J. H.; Bulanov, S. S.; van Tilborg, J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019, 122, 084801.

[7]

Leemans, W. P.; Gonsalves, A. J.; Mao, H. S.; Nakamura, K.; Benedetti, C.; Schroeder, C. B.; Tóth, C.; Daniels, J.; Mittelberger, D. E.; Bulanov, S. S. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014, 113, 245002.

[8]

Higginson, A.; Gray, R. J.; King, M.; Dance, R. J.; Williamson, S. D. R.; Butler, N. M. H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J. S. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018, 9, 724.

[9]

Ma, W. J.; Liu, Z. P.; Wang, P. J.; Zhao, J. R.; Yan, X. Q. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes. Acta Phys. Sin. 2021, 70, 084102.

[10]

Ledingham, K. W. D.; Bolton, P. R.; Shikazono, N.; Ma, C. M. C. Towards laser driven hadron cancer radiotherapy: A review of progress. Appl. Sci. 2014, 4, 402–443.

[11]

Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 2007, 10, 061301.

[12]

Pukhov, A.; Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 2002, 74, 355–361.

[13]

Esarey, E.; Schroeder, C. B.; Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285.

[14]

Corde, S.; Phuoc, K. T.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1–48.

[15]

Daido, H.; Nishiuchi, M.; Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401.

[16]

Pukhov, A.; Sheng, Z. M.; Meyer-ter-Vehn, J. Particle acceleration in relativistic laser channels. Phys. Plasmas 1999, 6, 2847–2854.

[17]

Pukhov, A.; Meyer-ter-Vehn, J. Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 1996, 76, 3975–3978.

[18]

Robinson, A. P. L.; Arefiev, A. V.; Neely, D. Generating “superponderomotive” electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. Phys. Rev. Lett. 2013, 111, 065002.

[19]

Willingale, L.; Nagel, S. R.; Thomas, A. G. R.; Bellei, C.; Clarke, R. J.; Dangor, A. E.; Heathcote, R.; Kaluza, M. C.; Kamperidis, C.; Kneip, S. et al. Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 2009, 102, 125002.

[20]

Prencipe, I.; Sgattoni, A.; Dellasega, D.; Fedeli, L.; Cialfi, L.; Choi, I. W.; Kim, I. J.; Janulewicz, K. A.; Kakolee, K. F.; Lee, H. W. et al. Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Control. Fusion 2016, 58, 034019.

[21]

Prencipe, I.; Metzkes-Ng, J.; Pazzaglia, A.; Bernert, C.; Dellasega, D.; Fedeli, L.; Formenti, A.; Garten, M.; Kluge, T.; Kraft, S. et al. Efficient laser-driven proton and bremsstrahlung generation from cluster-assembled foam targets. New J. Phys. 2021, 23, 093015.

[22]

Rosmej, O. N.; Andreev, N. E.; Zaehter, S.; Zahn, N.; Christ, P.; Borm, B.; Radon, T.; Sokolov, A.; Pugachev, L. P.; Khaghani, D. et al. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys. 2019, 21, 043044.

[23]

Rosmej, O. N.; Gyrdymov, M.; Günther, M. M.; Andreev, N. E.; Tavana, P.; Neumayer, P.; Zähter, S.; Zahn, N.; Popov, V. S.; Borisenko, N. G. et al. High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Phys. Control. Fusion 2020, 62, 115024.

[24]

Lan, H. Y.; Wu, D.; Liu, J. X.; Zhang, J. Y.; Lu, H. G.; Lv, J. F.; Wu, X. Z.; Luo, W.; Yan, X. Q. Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons. Nucl. Sci. Tech. 2023, 34, 74.

[25]

Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D. W.; Stephens, R. B.; Alexander, N. B.; Briggs, R.; Büscher, M.; Cernaianu, M. O.; Choukourov, A. et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017, 5, e17.

[26]

Tikhonchuk, V.; Gu, Y. J.; Klimo, O.; Limpouch, J.; Weber, S. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes. Matter Radiat. Extremes 2019, 4, 045402.

[27]

Fedeli, L.; Formenti, A.; Cialfi, L.; Pazzaglia, A.; Passoni, M. Ultra-intense laser interaction with nanostructured near-critical plasmas. Sci. Rep. 2018, 8, 3834.

[28]

Shou, Y. R.; Wang, P. J.; Lee, S. G.; Rhee, Y. J.; Lee, H. W.; Yoon, J. W.; Sung, J. H.; Lee, S. K.; Pan, Z.; Kong, D. F. et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma. Nat. Photonics 2023, 17, 137–142.

[29]

Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311.

[30]

Ma, W. J.; Liu, L. Q.; Yang, R.; Zhang, T. H.; Zhang, Z.; Song, L.; Ren, Y.; Shen, J.; Niu, Z. Q.; Zhou, W. Y. et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 2009, 21, 603–608.

[31]

Ma, W. J.; Liu, L. Q.; Zhang, Z.; Yang, R.; Liu, G.; Zhang, T. H.; An, X. F.; Yi, X. S.; Ren, Y.; Niu, Z. Q. et al. High-strength composite fibers: Realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 2009, 9, 2855–2861.

[32]

Liu, L. Q.; Ma, W. J.; Zhang, Z. Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications. Small 2011, 7, 1504–1520.

[33]

Zhou, W. Y.; Bai, X. D.; Wang, E. G.; Xie, S. S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 2009, 21, 4565–4583.

[34]

Ma, W. J.; Feng, B. H.; Ren, Y.; Zeng, Q. S.; Niu, Z. Q.; Li, J. Z.; Zhang, X. X.; Dong, H. B.; Zhou, W. Y.; Xie, S. S. Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films. J. Nanosci. Nanotechnol. 2010, 10, 7333–7335.

[35]

Li, J. Z.; Ma, W. J.; Song, L.; Niu, Z. Q.; Cai, L.; Zeng, Q. S.; Zhang, X. X.; Dong, H. B.; Zhao, D.; Zhou, W. Y. et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011, 11, 4636–4641.

[36]

Gao, Y.; Li, J. Z.; Liu, L. Q.; Ma, W. J.; Zhou, W. Y.; Xie, S. S.; Zhang, Z. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv. Funct. Mater. 2010, 20, 3797–3803.

[37]

Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440–1446.

[38]

Szerypo, J.; Ma, W.; Bothmann, G.; Hahner, D.; Haug, M.; Hilz, P.; Kreuzer, C.; Lange, R.; Seuferling, S.; Speicher, M. et al. Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich. Matter Radiat. Extremes 2019, 4, 035201.

[39]

Wang, P. J.; Qi, G. J.; Pan, Z.; Kong, D. F.; Shou, Y. R.; Liu, J. B.; Cao, Z. X.; Mei, Z. S.; Xu, S. R.; Liu, Z. P. et al. Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser-plasma experiments. High Power Laser Sci. Eng. 2021, 9, e29.

[40]

Bin, J. H.; Ma, W. J.; Wang, H. Y.; Streeter, M. J. V.; Kreuzer, C.; Kiefer, D.; Yeung, M.; Cousens, S.; Foster, P. S.; Dromey, B. et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 2015, 115, 064801.

[41]

Ma, W. J.; Kim, I. J.; Yu, J. Q.; Choi, I. W.; Singh, P. K.; Lee, H. W.; Sung, J. H.; Lee, S. K.; Lin, C.; Liao, Q. et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 2019, 122, 014803.

[42]

Mei, Z. S.; Pan, Z.; Liu, Z. P.; Xu, S. R.; Shou, Y. R.; Wang, P. J.; Cao, Z. X.; Kong, D. F.; Liang, Y. L.; Peng, Z. Y. et al. Energetic laser-driven proton beams from near-critical-density double-layer targets under moderate relativistic intensities. Phys. Plasmas 2023, 30, 033107.

[43]

Wang, P. J.; Gong, Z.; Lee, S. G.; Shou, Y. R.; Geng, Y. X.; Jeon, C.; Kim, I. J.; Lee, H. W.; Yoon, J. W.; Sung, J. H. et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X 2021, 11, 021049.

[44]

Kneip, S.; Nagel, S. R.; Bellei, C.; Bourgeois, N.; Dangor, A. E.; Gopal, A.; Heathcote, R.; Mangles, S. P. D.; Marquès, J. R.; Maksimchuk, A. et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 2008, 100, 105006.

[45]

Cipiccia, S.; Islam, M. R.; Ersfeld, B.; Shanks, R. P.; Brunetti, E.; Vieux, G.; Yang, X.; Issac, R. C.; Wiggins, S. M.; Welsh, G. H. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011, 7, 867–871.

[46]

Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K. et al. Laser-wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015, 5, 13244.

[47]

Khrennikov, K.; Wenz, J.; Buck, A.; Xu, J.; Heigoldt, M.; Veisz, L.; Karsch, S. Tunable all-optical quasimonochromatic Thomson X-ray source in the nonlinear regime. Phys. Rev. Lett. 2015, 114, 195003.

[48]

Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B. et al. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density Plasma. Phys. Rev. Lett. 2018, 120, 074801.

[49]

Liu, J. B.; Yu, J. Q.; Shou, Y. R.; Wang, D. H.; Hu, R. H.; Tang, Y. H.; Wang, P. J.; Cao, Z. X.; Mei, Z. S.; Lin, C. et al. Generation of bright γ-ray/hard X-ray flash with intense femtosecond pulses and double-layer targets. Phys. Plasmas 2019, 26, 033109.

[50]

Macchi, A.; Pegoraro, F. Lighting up a nest for X-ray emission. Nat. Photonics 2023, 17, 129–130.

[51]

Shou, Y. R.; Wang, D. H.; Wang, P. J.; Liu, J. B.; Cao, Z. X.; Mei, Z. S.; Xu, S. R.; Pan, Z.; Kong, D. F.; Qi, G. J. et al. High-efficiency generation of narrowband soft X rays from carbon nanotube foams irradiated by relativistic femtosecond lasers. Opt. Lett. 2021, 46, 3969–3972.

Nano Research
Pages 12572-12578
Cite this article:
Ma W. Carbon nanotubes as outstanding targets for laser-driven particle acceleration. Nano Research, 2023, 16(11): 12572-12578. https://doi.org/10.1007/s12274-023-6256-z
Topics:

658

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 September 2023
Revised: 09 October 2023
Accepted: 09 October 2023
Published: 31 October 2023
© Tsinghua University Press 2023
Return