AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia

Fuzhou Wang§Jiaqi Xiang§Guike ZhangKai ChenKe Chu( )
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

§ Fuzhou Wang and Jiaqi Xiang contributed equally to this work.

Show Author Information

Graphical Abstract

Single-atom Co alloyed Ru (Co1Ru) has been established as a highly active and durable reduction reaction of NO2 to NH3 (NO2RR) catalyst, attributed to the construction of Co1-Ru heteronuclear active sites to synergistically promote NO2 activation/hydrogenation while suppressing the competitive H2 evolution.

Abstract

Electrochemical converting NO2 into NH3 (NO2RR) holds an enormous prospect to attain efficient NH3 electrosynthesis and polluted NO2 mitigation. Herein, we report single-atom Co alloyed Ru (Co1Ru) as an efficient and durable NO2RR catalyst. Extensive experimental and theoretical investigations reveal that single-atom Co alloying of Ru enables the construction of Co1-Ru heteronuclear active sites to synergistically promote NO2 activation/hydrogenation while suppressing the competitive H2 evolution, rendering the greatly enhanced activity and selectivity of Co1Ru towards the NO2RR. Consequently, Co1Ru assembled within a flow cell exhibits an impressive NH3 yield rate of 2379.2 μmol·h−1·cm−2 with an NH3-Faradaic efficiency of 92% at a high current density of 415.9 mA·cm−2, which is among the highest NO2RR performances reported to date.

Electronic Supplementary Material

Download File(s)
12274_2023_6261_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, 9120010.

[2]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[3]

Chen, Y.; Chen, C.; Cao, X. S.; Wang, Z. Y.; Zhang, N.; Liu, T. X. Recent advances in defect and interface engineering for electroreduction of CO2 and N2. Acta Phys. Chim. Sin. 2023, 39, 2212053.

[4]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[5]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

[6]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[7]

Li, X. C.; Luo, Y. J.; Li, Q. Q.; Guo, Y. L.; Chu, K. Constructing an electron-rich interface over an Sb/Nb2CT x -MXene heterojunction for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2021, 9, 15955–15962.

[8]

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CT x -MXene. Small 2021, 17, 2102363.

[9]

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

[10]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3− x synergistically coupling Ti3C2T x -MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[11]

Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

[12]

Zhu, X. F.; Fan, X.; Lin, H. P.; Li, S. N.; Zhai, Q. G.; Jiang, Y. C.; Chen, Y. Highly efficient electroenzymatic cascade reduction reaction for the conversion of nitrite to ammonia. Adv. Energy Mater. 2023, 13, 2300669.

[13]

Zhang, Y. Y.; Wang, Y.; Han, L.; Wang, S. N.; Cui, T. D.; Yan, Y. F.; Xu, M.; Duan, H. H.; Kuang, Y.; Sun, X. M. Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity faradaic efficiency. Angew. Chem., Int. Edit. 2023, 62, e202213711.

[14]

Yuan, J. F.; Yin, H. Q.; Jin, X. X.; Zhao, D.; Liu, Y.; Du, A. J.; Liu, X. Q.; O’Mullane, A. P. A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia. Appl. Catal. B: Environ. 2023, 325, 122353.

[15]

Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

[16]

Cai, Z. W.; Zhao, D. L.; Fan, X. Y.; Zhang, L. C.; Liang, J.; Li, Z. X.; Li, J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Rational construction of heterostructured Cu3P@TiO2 nanoarray for high-efficiency electrochemical nitrite reduction to ammonia. Small 2023, 19, 2300620.

[17]

He, X.; Li, Z. X.; Yao, J.; Dong, K.; Li, X. H.; Hu, L.; Sun, S. J.; Cai, Z. W.; Zheng, D. D.; Luo, Y. S. et al. High-efficiency electrocatalytic nitrite reduction toward ammonia synthesis on CoP@TiO2 nanoribbon array. iScience 2023, 26, 107100.

[18]
Yue, L. C.; Song, W.; Zhang, L. X.; Luo, Y. L.; Wang, Y.; Li, T. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q. et al. Recent advance in heterogenous electrocatalysts for highly selective nitrite reduction to ammonia under ambient condition. Small Struct., in press, https://doi.org/10.1002/sstr.202300168.
[19]

Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.

[20]

Ouyang, L.; He, X.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Chen, J.; Li, Y. W.; Lin, Y. X.; Liu, Q.; Asiri, A. M. et al. Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array. J. Mater. Chem. A 2022, 10, 23494–23498.

[21]

Wang, J. Q.; Liang, J.; Liu, P. Y.; Yan, Z.; Cui, L. X.; Yue, L. C.; Zhang, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L. et al. Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. J. Mater. Chem. A 2022, 10, 2842–2848.

[22]
Zhang, G. K.; Wang, F. Z.; Chen, K.; Kang, J. L.; Chu, K. Atomically dispersed Sn confined in FeS2 for nitrate-to-ammonia electroreduction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202305372.
[23]

Xiang, J. Q.; Zhao, H. Y.; Chen, K.; Li, X. C.; Li, X. G.; Chu, K. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. J. Colloid Interf. Sci. 2024, 653, 390–395.

[24]

Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

[25]

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

[26]

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

[27]

Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

[28]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[29]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[30]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[31]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[32]

Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B: Environ. 2022, 310, 121346.

[33]

Xie, H.; Wan, Y. Y.; Wang, X. M.; Liang, J. S.; Lu, G.; Wang, T. Y.; Chai, G. L.; Adli, N. M.; Priest, C.; Huang, Y. H. et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B: Environ. 2021, 289, 119783.

[34]

Wang, H. J.; Jiao, L.; Zheng, L. R.; Fang, Q.; Qin, Y.; Luo, X.; Wei, X. Q.; Hu, L. Y.; Gu, W. L.; Wen, J. et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv. Funct. Mater. 2021, 31, 2103465.

[35]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[36]

Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

[37]

Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B: Environ. 2022, 316, 121651.

[38]

Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.

[39]

Wang, J. J.; Cao, G. Q.; Duan, R. X.; Li, X. Y.; Li, X. F. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode. Acta. Phys. Chim. Sin. 2023, 39, 2212005.

[40]

Chen, K.; Wang, F. Z.; Lu, X. B.; Li, Y. H.; Chu, K. Atomically dispersed W1-O3 bonded on Pd metallene for cascade NO electroreduction to NH3. ACS Catal. 2023, 13, 9550–9557.

[41]

Chen, K.; Wang, G. H.; Guo, Y. L.; Ma, D. W.; Chu, K. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res. 2023, 16, 8737–8742.

[42]

Wang, Y. J.; He, H. C.; Wang, Y. J.; Xie, M. L.; Jing, F.; Yin, X. H.; Hu, F. L.; Mi, Y. Surface defect and lattice engineering of Bi5O7Br ultrathin nanosheets for efficient photocatalysis. Nano Res. 2023, 16, 248–255.

[43]

Zhang, S. C.; Tan, C. H.; Yan, R. P.; Zou, X. F.; Hu, F. L.; Mi, Y.; Yan, C.; Zhao, S. L. Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew. Chem. 2023, 135, e202302795.

[44]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3− x /MXene for N2 electroreduction to NH3. Adv. Energy. Mater. 2022, 12, 2103022.

[45]

Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuO x clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

[46]

Zhang, N. N.; Zhang, G. K.; Tian, Y.; Guo, Y. L.; Chu, K. Boron phosphide as an efficient metal-free catalyst for nitrate electroreduction to ammonia. Dalton Trans. 2023, 52, 4290–4295.

[47]

Wang, G. H.; Zhang, Y.; Chen, K.; Guo, Y. L.; Chu, K. PdP2 nanoparticles on reduced graphene oxide: A catalyst for the electrocatalytic reduction of nitrate to ammonia. Inorg. Chem. 2023, 62, 6570–6575.

[48]

Chen, Q. Y.; An, X. G.; Liu, Q.; Wu, X. Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@Cu2O catalyst. Chem. Commun. 2022, 58, 517–520.

[49]

Du, H. T.; Guo, H. R.; Wang, K. K.; Du, X. N.; Beshiwork, B. A.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Li, T. S.; Sun, X. P. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angew. Chem. 2023, 135, e202215782.

[50]

Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TIO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388

[51]

Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.

[52]

Liu, S. L.; Cui, L.; Yin, S. L.; Ren, H.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B: Environ. 2022, 319, 121876.

[53]

Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Ali Alshehri, A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interf. Sci. 2022, 623, 513–519.

[54]

Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

[55]

Zhang, X.; Wang, Y. T.; Wang, Y. B.; Guo, Y. M.; Xie, X. Y.; Yu, Y. F.; Zhang, B. Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 2022, 58, 2777–2787.

[56]

Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288

[57]

Zhang, N. N.; Wang, G. H.; Zhang, G. K.; Chen, K.; Chu, K. Electrochemical nitrate-to-ammonia reduction over atomic Fe-dopants incorporated in CoS2. Chem. Eng. J. 2023, 474, 145861.

[58]

Zhang, G. K.; Wan, Y. Y.; Zhao, H. Y.; Guo, Y. L.; Chu, K. A metal-free catalyst for electrocatalytic NO reduction to NH3. Dalton Trans. 2023, 52, 6248–6253.

Nano Research
Pages 3660-3666
Cite this article:
Wang F, Xiang J, Zhang G, et al. Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia. Nano Research, 2024, 17(5): 3660-3666. https://doi.org/10.1007/s12274-023-6261-2
Topics:

756

Views

17

Crossref

16

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 28 August 2023
Revised: 27 September 2023
Accepted: 11 October 2023
Published: 08 November 2023
© Tsinghua University Press 2023
Return