Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bismuth vanadate (BiVO4) is a promising photoanode material for efficient photoelectrochemical (PEC) water splitting, whereas its performance is inhibited by detrimental surface states. To solve the problem, herein, a low-cost organic molecule 1,3,5-benzenetricarboxylic acid (BTC) is selected for surface passivation of BiVO4 photoanodes (BVOs), which also provides bonding sites for Co2+ to anchor, resulting in a Co-BTC-BVO photoanode. Owing to its strong coordination with metal ions, BTC not only passivates surface states of BVO, but also provides bonding between BVO and catalytic active sites (Co2+) to form a molecular cocatalyst. Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer. The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and a low onset potential of 0.22 VRHE under AM 1.5 G illumination, which ranks among the best photoanodes coupled with Co-based cocatalysts. This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.
Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.
Jiang, C. R.; Moniz, S. J. A.; Wang, A. Q.; Zhang, T.; Tang, J. W. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660.
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.
Trześniewski, B. J.; Smith, W. A. Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4, 2919–2926.
Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Appl. Catal. B 2018, 225, 504–511.
Li, X.; Liu, S. W.; Fan, K.; Liu, Z. Q.; Song, B.; Yu, J. G. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 2018, 8, 1800101.
Li, D. Y.; Huang, Y. L.; Ma, R. J.; Liu, H.; Liang, Q.; Han, Y.; Ren, Z. W.; Liu, K.; Fong, P. W. K.; Zhang, Z. Q. et al. Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells. Adv. Energy Mater. 2023, 13, 2204247.
Mao, L. L.; Huang, Y. C.; Deng, H.; Meng, F. Q.; Fu, Y. M.; Wang, Y. Q.; Li, M. T.; Zhang, Q. H.; Dong, C. L.; Gu, L. et al. Synergy of ultrathin CoO x overlayer and nickel single atoms on hematite nanorods for efficient photo-electrochemical water splitting. Small 2023, 19, 2203838.
Zhang, S. C.; Liu, Z. F.; Chen, D.; Yan, W. G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoO x cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B 2020, 277, 119197.
Fu, S. R.; Hu, H. Y.; Feng, C. C.; Zhang, Y. J.; Bi, Y. P. Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting. J. Mater. Chem. A 2019, 7, 2513–2517.
Ning, X. M.; Du, P. Y.; Han, Z. G.; Chen, J.; Lu, X. Q. Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew. Chem., Int. Edit. 2021, 60, 3504–3509.
Usman, E.; Vishlaghi, M. B.; Kahraman, A.; Solati, N.; Kaya, S. Modifying the electron-trapping process at the BiVO4 surface states via the TiO2 overlayer for enhanced water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 60602–60611.
Varadhan, P.; Fu, H. C.; Priante, D.; Retamal, J. R. D.; Zhao, C.; Ebaid, M.; Ng, T. K.; Ajia, I.; Mitra, S.; Roqan, I. S. et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 2017, 17, 1520–1528.
Li, F.; Jian, J.; Xu, Y. X.; Liu, W.; Ye, Q.; Feng, F.; Li, C.; Jia, L. C.; Wang, H. Q. Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. J. Chem. Phys. 2020, 153, 024705.
Firet, N. J.; Venugopal, A.; Blommaert, M. A.; Cavallari, C.; Sahle, C. J.; Longo, A.; Smith, W. A. Chemisorption of anionic species from the electrolyte alters the surface electronic structure and composition of photocharged BiVO4. Chem. Mater. 2019, 31, 7453–7462.
Köppen, M.; Dhakshinamoorthy, A.; Inge, A. K.; Cheung, O.; Ångström, J.; Mayer, P.; Stock, N. Synthesis, transformation, catalysis, and gas sorption investigations on the bismuth metal-organic framework CAU-17. Eur. J. Inorg. Chem. 2018, 2018, 3496–3503.
Zhang, R. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Appl. Catal. B 2019, 254, 463–470.
Ying, Y. L.; Khezri, B.; Kosina, J.; Pumera, M. Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: Morphology engineering. ChemSusChem 2021, 14, 3402–3412.
Zhang, Y. J.; Xu, L. C.; Liu, B. Y.; Wang, X.; Wang, T. S.; Xiao, X.; Wang, S. C.; Huang, W. Engineering BiVO4 and oxygen evolution cocatalyst interfaces with rapid hole extraction for photoelectrochemical water splitting. ACS Catal. 2023, 13, 5938–5948.
Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2021, 60, 1976–1985.
Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.
Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.
Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.
Lin, J. Y.; Han, X. J.; Liu, S. Y.; Lv, Y.; Li, X.; Zhao, Y. X.; Li, Y.; Wang, L. Z.; Zhu, S. M. Nitrogen-doped cobalt-iron oxide cocatalyst boosting photoelectrochemical water splitting of BiVO4 photoanodes. Appl. Catal. B 2023, 320, 121947.
Zhu, S. M.; Yan, D. Y. Atom transfer radical polymerization of methyl methacrylate catalyzed by IronII chloride/isophthalic acid system. Macromolecules 2000, 33, 8233–8238.
Xie, J. L.; Guo, C. X.; Yang, P. P.; Wang, X. D.; Liu, D. Y.; Li, C. M. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 2017, 31, 28–36.
Lu, Y. M.; Su, J. Z.; Shi, J. W.; Zhou, D. Surface recombination passivation of the BiVO4 photoanode by the synergistic effect of the cobalt/nickel sulfide cocatalyst. ACS Appl. Energy Mater. 2020, 3, 9089–9097.
Prabhakar, R. R.; Moehl, T.; Friedrich, D.; Kunst, M.; Shukla, S.; Adeleye, D.; Damle, V. H.; Siol, S.; Cui, W.; Gouda, L. et al. Sulfur treatment passivates bulk defects in Sb2Se3 photocathodes for water splitting. Adv. Funct. Mater. 2022, 32, 2112184.
Zhang, M. Y.; Antony, R. P.; Chiam, S. Y.; Abdi, F. F.; Wong, L. H. Understanding the roles of NiO x in enhancing the photoelectrochemical performance of BiVO4 photoanodes for solar water splitting. ChemSusChem 2019, 12, 2022–2028.
Sun, Q.; Cheng, T.; Liu, Z. R.; Qi, L. M. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B 2020, 277, 119189.
Dai, Y. W.; Cheng, P.; Xie, G. C.; Li, C. C.; Akram, M. Z.; Guo, B. D.; Boddula, R.; Shi, X. H.; Gong, J. L.; Gong, J. R. Modulating photoelectrochemical water-splitting activity by charge-storage capacity of electrocatalysts. J. Phys. Chem. C 2019, 123, 28753–28762.
Li, Y.; Dai, X. Y.; Bu, Y. Y.; Zhang, H. Z.; Liu, J.; Yuan, W. Y.; Guo, X. H.; Ao, J. P. Photoelectrochemical performance improving mechanism: Hybridization appearing at the energy band of BiVO4 photoanode by doped quantum layers modification. Small 2022, 18, 2200454.
Liu, Z. Y.; Wu, X. F.; Zheng, B. N.; Sun, Y.; Hou, C. M.; Wu, J.; Huang, K. K.; Feng, S. H. Cobalt-plasma treatment enables structural reconstruction of a CoO x /BiVO4 composite for efficient photoelectrochemical water splitting. Chem. Commun. 2022, 58, 9890–9893.
Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 2012, 134, 4294–4302.
Lopes, T.; Andrade, L.; Le Formal, F.; Gratzel, M.; Sivula, K.; Mendes, A. Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 16515–16523.
Agarwal, P.; Orazem, M. E.; Garcia-Rubio, L. H. Measurement models for electrochemical impedance spectroscopy: I. Demonstration of applicability. J. Electrochem. Soc. 1992, 139, 1917–1927.
Abouzari, M. R. S.; Berkemeier, F.; Schmitz, G.; Wilmer, D. On the physical interpretation of constant phase elements. Solid State Ionics 2009, 180, 922–927.
Chang, S. H.; Liou, J. S.; Liu, J. L.; Chiu, Y. F.; Xu, C. H.; Chen, B. Y.; Chen, J. Z. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J. Power Sources 2016, 336, 99–106.
Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.