AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulate electric double layer for one-step synthesize and modulate the morphology of (oxy)hydroxides

Jiaxin Liu1Yue Shi1Yanli Gu1Zheng Lv1Liang Zhao1Yu Yang1Tianrong Zhan1Jianping Lai1( )Lei Wang1,2( )
State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Show Author Information

Graphical Abstract

One-step electrodeposition was used to synthesize and modulate the morphology of integrated FeOOH by adjusting the electric double layer (EDL), which provides a feasible strategy for the synthesizing and regulating the morphology of other integrated transition metal (oxy)hydroxides and can be extended to other catalytic reactions.

Abstract

FeOOH have received considerable attention due to their natural abundance and cost-effectiveness. Despite the significant progress achieved, the one-step synthesis of integrated FeOOH is still a major challenge. Meanwhile, the current research on FeOOH catalyst still suffers from the unclear mechanism of controlling morphology. Here, density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) demonstrated the strong electron-capturing and hydrogen absorption ability of Co in FeOOH, which further promotes the formation and stabilization of FeOOH. We used a one-step electrodeposition method to synthesize Co introduced FeOOH integrated electrocatalyst and propose to introduce ions with different valence states to regulate the morphology of FeOOH by precise modulation of electric double layer (EDL) composition and thickness. The prepared Co-FeOOH-K+ has a larger electrochemically active surface area (ECSA) (325 cm2) and turnover frequency (TOF) value (0.75 s−1). In the electrochemical experiments of an alkaline anion exchange membrane electrolyzer, Co-FeOOH-K+ shows better oxygen evolution performance than commercial RuO2 under industrial production conditions and has good industrial application prospects.

Electronic Supplementary Material

Download File(s)
12274_2023_6264_MOESM1_ESM.pdf (7.5 MB)

References

[1]

Yu, W. L.; Chen, Z.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Chai, Y. M.; Wu, Z. X.; Wang, L. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv. Funct. Mater. 2023, 33, 2210855.

[2]

He, Y. Q.; Yan, F.; Zhang, X.; Zhu, C. L.; Zhao, Y. Y.; Geng, B.; Chou, S. L.; Xie, Y.; Chen, Y. J. Creating dual active sites in conductive metal-organic frameworks for efficient water splitting. Adv. Energy Mater. 2023, 13, 2204177.

[3]

Zeng, S. P.; Shi, H.; Dai, T. Y.; Liu, Y.; Wen, Z.; Han, G. F.; Wang, T. H.; Zhang, W.; Lang, X. Y.; Zheng, W. T. et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 2023, 14, 1811.

[4]

Yang, C. Z.; Fontaine, O.; Tarascon, J. M.; Grimaud, A. Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 8652–8656.

[5]

Liao, H. X.; Ni, G. H.; Tan, P. F.; Liu, K.; Liu, X. Z.; Liu, H. L.; Chen, K. J.; Zheng, X. S.; Liu, M.; Pan, J. Oxyanion engineering suppressed iron segregation in nickel-iron catalysts toward stable water oxidation. Adv. Mater. 2023, 35, 2300347.

[6]

Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

[7]

Liu, Z. Q.; Liang, X. Y.; Ma, F. X.; Xiong, Y. X.; Zhang, G. B.; Chen, G. H.; Zhen, L.; Xu, C. Y. Decoration of NiFe-LDH nanodots endows lower Fe-d band center of Fe1-N-C hollow nanorods as bifunctional oxygen electrocatalysts with small overpotential gap. Adv. Energy Mater. 2023, 13, 2203609.

[8]

Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.

[9]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[10]

Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3− δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.

[11]

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

[12]

Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (Oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757.

[13]

Li, L.; Zhang, G. W.; Xu, J. W.; He, H. J.; Wang, B.; Yang, Z. M.; Yang, S. C. Optimizing the electronic structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis. Adv. Funct. Mater. 2023, 33, 2213304.

[14]

Zhang, T. Y.; Zhao, S. C.; Zhu, C. M.; Shi, J.; Su, C.; Yang, J. W.; Wang, M.; Li, J.; Li, J. H.; Liu, P. L. et al. Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 16, 624–633.

[15]

Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 15, 8751–8759.

[16]

Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

[17]

Wen, Q. L.; Wang, S. Z.; Wang, R. W.; Huang, D. J.; Fang, J. K.; Liu, Y. W.; Zhai, T. Y. Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Res. 2023, 16, 2286–2293.

[18]

Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In- situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B Environ. 2021, 286, 119906.

[19]

Shi, Y.; Zhang, D.; Miao, H. F.; Zhang, W.; Wu, X. K.; Wang, Z. C.; Li, H. D.; Zhan, T. R.; Chen, X. L.; Lai, J. P. et al. A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance. J. Mater. Chem. A 2021, 9, 24261–24267.

[20]

Li, F.; Du, J.; Li, X. N.; Shen, J. Y.; Wang, Y.; Zhu, Y.; Sun, L. C. Integration of FeOOH and zeolitic imidazolate framework-derived nanoporous carbon as an efficient electrocatalyst for water oxidation. Adv. Energy Mater. 2018, 8, 1702598.

[21]

Cao, X. F.; Zhao, X.; Hu, J.; Chen, Z. First-principles investigation of the electronic properties of the Bi2O4(101)/BiVO4(010) heterojunction towards more efficient solar water splitting. Phys. Chem. Chem. Phys. 2020, 22, 2449–2456.

[22]

Li, Y.; Wu, Y. Y.; Yuan, M. K.; Hao, H. R.; Lv, Z.; Xu, L. L.; Wei, B. Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Appl. Catal. B Environ. 2022, 318, 121825.

[23]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[24]

Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869.

[25]

Zhang, H.; Shen, G. Q.; Liu, X. Y.; Ning, B.; Shi, C. X.; Pan, L.; Zhang, X. W.; Huang, Z. F.; Zou, J. J. Self-supporting NiFe LDH-MoS x integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chin. J. Catal. 2021, 42, 1732–1741.

[26]

Cai, M. M.; Zhu, Q.; Wang, X. Y.; Shao, Z. Y.; Yao, L.; Zeng, H.; Wu, X. F.; Chen, J.; Huang, K. K.; Feng, S. H. Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 2023, 35, 2209338.

[27]

Zhou, Q.; Chen, Y. P.; Zhao, G. Q.; Lin, Y.; Yu, Z. W.; Xu, X.; Wang, X. L.; Liu, H. K.; Sun, W. P.; Dou, S. X. Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 2018, 8, 5382–5390.

[28]

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

[29]

Gao, Z. W.; Liu, J. Y.; Chen, X. M.; Zheng, X. L.; Mao, J.; Liu, H.; Ma, T.; Li, L.; Wang, W. C.; Du, X. W. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. 2019, 31, 1804769.

[30]

Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Corrigendum: FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 14795.

[31]

Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S.-Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732

[32]

Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

[33]

Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

[34]

Yan, Z. H.; Liu, H. H.; Hao, Z. M.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem. Sci. 2020, 11, 10614–10625.

[35]

Wu, Q. S.; McDowell, M. T.; Qi, Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 2023, 145, 2473–2484.

[36]

Smith, A. M.; Borkovec, M.; Trefalt, G. Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 2020, 275, 102078.

[37]

Zhao, R. R.; Wang, H. F.; Du, H. R.; Yang, Y.; Gao, Z. H.; Qie, L.; Huang, Y. H. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 2022, 13, 3252.

[38]

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

[39]

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

[40]
Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S. H.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015 , 1, 244–251.
[41]

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

[42]

Chen, M. X.; Li, H. J.; Wu, C. L.; Liang, Y. B.; Qi, J.; Li, J.; Shangguan, E.; Zhang, W.; Cao, R. Interfacial engineering of heterostructured Co(OH)2/NiP x nanosheets for enhanced oxygen evolution reaction. Adv. Funct. Mater. 2022, 32, 2206407.

[43]

Liu, S. Q.; Dai, L. X.; Qu, Y. T.; Qiu, Y.; Fan, J. X.; Li, X.; Zhang, Q. H.; Guo, X. H. Crystalline/amorphous hetero-phase Ru nanoclusters for efficient electrocatalytic oxygen reduction and hydrogen evolution. Mater. Chem. Front. 2021, 5, 6648–6658.

[44]

Liang, Y.; Wang, J.; Liu, D. P.; Wu, L.; Li, T. Z.; Yan, S. C.; Fan, Q.; Zhu, K.; Zou, Z. G. Ultrafast fenton-like reaction route to FeOOH/NiFe-LDH heterojunction electrode for efficient oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 21785–21791.

[45]

Han, H. S.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.

[46]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[47]
Zai, S. F.; Dong, A. Q.; Li, J.; Wen, Z.; Yang, C. C.; Jiang, Q. Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. J. Mater. Chem. A 2021 , 9, 6223–6231.
[48]

Li, M. Z.; Niu, H. J.; Li, Y. L.; Liu, J. W.; Yang, X. Y.; Lv, Y. Z.; Chen, K. P.; Zhou, W. Synergetic regulation of CeO2 modification and (W2O7)2− intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation. Appl. Catal. B Environ. 2023, 330, 122612.

[49]

Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH) x /FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.

[50]

Qiao, X. Z.; Yin, X. M.; Wen, L.; Chen, X. Y.; Li, J. M.; Ye, H. C.; Huang, X. B.; Zhao, W. D.; Wang, T. Variable nanosheets for highly efficient oxygen evolution reaction. Chem 2022, 8, 3241–3251.

[51]

Shen, X. R.; Li, H. J.; Zhang, Y. Y.; Ma, T. T.; Li, Q.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Feng, C. H. Construction dual-regulated NiCo2S4 @Mo-doped CoFe-LDH for oxygen evolution reaction at large current density. Appl. Catal. B Environ. 2022, 319, 121917.

[52]

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

Nano Research
Pages 3675-3683
Cite this article:
Liu J, Shi Y, Gu Y, et al. Regulate electric double layer for one-step synthesize and modulate the morphology of (oxy)hydroxides. Nano Research, 2024, 17(5): 3675-3683. https://doi.org/10.1007/s12274-023-6264-z
Topics:

929

Views

5

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 05 August 2023
Revised: 25 September 2023
Accepted: 11 October 2023
Published: 21 November 2023
© Tsinghua University Press 2023
Return