AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ reduction strategy towards high conductivity, anti-freezing and super-stretchable rGO based hydrogel for diverse flexible electronics

Xin Zhang1Junhao Wang1Mengyan Wang1Dongxu Liu1Zhuo Wang2( )
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing 101400, China
Show Author Information

Graphical Abstract

In situ reduction of graphene oxide (GO)-based hydrogels with conductivity, anti-freezing and super-strechable hydrogel with multifunction have been fabricated. It has excellent properties while as flexible wearable electronics, even at sub-zero temperature.

Abstract

Hydrogels electrolytes with flexibility and high conductivity have been widely used in kinds of flexible electronics. However, hydrogels always suffer from the inevitable freezing of water at subzero temperatures, which results in the sacrificing of their electrical properties. Herein, an anti-freezing, flexible hydrogel based on in situ reduction of graphene oxide (GO) and laponite has been developed as electrolyte for high performance supercapacitor and sensitive sensors. The crosslinked GO and laponite in polyacrylamide (PAM) resulted in an enhanced mechanical property, while the in-situ reduction of GO in the hydrogel enhanced the conductivity and diminishes the aggregated of GO. These features guarantee a reliable electro signal as sensor and a high performance of the supercapacitor. Besides, in the process of preparation of reduced graphene oxide (rGO) hydrogel, the addition of ethylene glycol (EG) and KOH, endows the hydrogel antifreeze properties. This anti-freezing electrolyte can be stretched to a strain of 1600% and maintained a specific capacitance of 37.38 F·g−1 at −20 °C. In addition, the photothermal conversion character of rGO in the hydrogel, endows it’s the potential application in wound healing. The overall merits of the hydrogel will open up a new avenue for sensitive sensor and energy storage device in practical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6267_MOESM1_ESM.pdf (742.2 KB)

References

[1]

Xu, Y. F.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J. W.; Loomis, J.; Wang, J. J.; Li, M. D.; Ghasemi, H.; Huang, X. P. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771.

[2]

Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

[3]

Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Yang, H. S.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019, 12, 1199–1206.

[4]

Chen, Z.; Li, X. L.; Wang, D. H.; Yang, Q.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Chen, A.; Guo, Y.; Dong, B. B. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 2021, 14, 3492–3501.

[5]

Long, Y.; Jiang, B.; Huang, T. C.; Liu, Y. X.; Niu, J. N.; Wang, Z. L.; Hu, W. G. Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 2023, 33, 2304625.

[6]

Wang, Z. W.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459.

[7]

Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

[8]

Wang, X. F.; Yin, Y. J.; Yi, F.; Dai, K. R.; Niu, S. M.; Han, Y. Z.; Zhang, Y.; You, Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017, 39, 429–436.

[9]

Wu, S.; Lou, D. Y.; Wang, H. Y.; Jiang, D. Q.; Fang, X.; Meng, J.Q.; Sun, X. Y.; Li, J. One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors. Chem. Eng. J. 2022, 435, 135057.

[10]

Feng, E. K.; Li, J. J.; Zheng, G. C.; Yan, Z.; Li, X.; Gao, W.; Ma, X. X.; Yang, Z. M. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor. ACS Sustain. Chem. Eng. 2021, 9, 7267–7276.

[11]

Lan, J.; Li, Y. S.; Yan, B.; Yin, C. X.; Ran, R.; Shi, L. Y. Transparent stretchable dual-network ionogel with temperature tolerance for high-performance flexible strain sensors. ACS Appl. Mater. Interfaces 2020, 12, 37597–37606.

[12]

Li, S. N.; Yu, Z. R.; Guo, B. F.; Guo, K. Y.; Li, Y.; Gong, L. X.; Zhao, L.; Bae, J.; Tang, L. C. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2T X MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021, 90, 106502.

[13]

Deka, B. K.; Hazarika, A.; Lee, S.; Kim, D. Y.; Park, Y. B.; Park, H. W. Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy 2020, 73, 104754.

[14]

Chan, C. Y.; Wang, Z. Q.; Jia, H.; Ng, P. F.; Chow, L.; Fei, B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 2021, 9, 2043–2069.

[15]

Lu, C.; Chen, X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 2020, 20, 1907–1914.

[16]

Zhu, T. X.; Ni, Y. M.; Biesold, G. M.; Cheng, Y.; Ge, M. Z.; Li, H. Q.; Huang, J. Y.; Lin, Z. Q.; Lai, Y. K. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509.

[17]

Song, K. Z.; Jiang, Y. Q.; Pang, X.; Li, Y. Y.; Liu, J. P. Electrodepositing a 3D porous rGO electrode for efficient hydrogel electrolyte integration towards 1.6 V flexible symmetric supercapacitors. Chem. Commun. 2019, 55, 8282–8285.

[18]

Huang, X. W.; Huang, J. H.; Yang, D.; Wu, P. Y. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv. Sci. 2021, 8, 2101664.

[19]

Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

[20]

Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Han, X.; Yao, Y. G.; Wong, C. P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559.

[21]

Wang, Z.; Liu, Z. R.; Zhao, G. R.; Zhang, Z. C.; Zhao, X. Y.; Wan, X. Y.; Zhang, Y. L.; Wang, Z. L.; Li, L. L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670.

[22]

Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[23]

Li, C.; Shi, G. Q. Functional gels based on chemically modified graphenes. Adv. Mater. 2014, 26, 3992–4012.

[24]

Song, B.; Li, L. Y.; Lin, Z. Y.; Wu, Z. K.; Moon, K. S.; Wong, C. P. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy 2015, 16, 470–478.

[25]

Wang, C. H.; Ding, Y. J.; Yuan, Y.; Cao, A. Y.; He, X. D.; Peng, Q. Y.; Li, Y. B. Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 2016, 12, 4070–4076.

[26]

Li, Z.; Hu, K.; Yang, M.; Zou, Y.; Yang, J.; Yu, M.; Wang, H.; Qu, X.; Tan, P.; Wang, C.; Zhou, X.; Li, Z. Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy 2019, 58, 852–861

[27]

Wang, X. Y.; Zhang, Q. Q.; Zhao, L.; Hadi, M. K.; Sambasivam, S.; Zhou, Q.; Ran, F. A renewable hydrogel electrolyte membrane prepared by carboxylated chitosan and polyacrylamide for solid-state supercapacitors with wide working temperature range. J. Power Sources 2023, 560, 232704

[28]

Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

[29]

Zhao, X. Y.; Wang, Z.; Liu, Z. R.; Yao, S. C.; Zhang, J. M.; Zhang, Z. C.; Huang, T.; Zheng, L.; Wang, Z. L.; Li, L. L. Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 2022, 96, 107067.

[30]

Zeng, Y. K.; Zhong, J. P.; Wang, H. B.; Fu, M. L.; Ye, D. Q.; Hu, Y. Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chem. Eng. J. 2021, 425, 131658.

[31]

Shen, Q. Q.; Zhang, W. D.; Shao, J. P.; Yin, Y.; Zhang, L.; Cui, Q.; Wang, H. Y. Preparation and direct photothermal property of reduced graphene oxide @copper foam cured MIL-101 for solar adsorption cooling process. Energy Convers. Manage. 2022, 251, 115011.

[32]

Ma, B. J.; Nishina, Y.; Bianco, A. A glutathione responsive nanoplatform made of reduced graphene oxide and MnO2 nanoparticles for photothermal and chemodynamic combined therapy. Carbon 2021, 178, 783–791.

Nano Research
Pages 4016-4022
Cite this article:
Zhang X, Wang J, Wang M, et al. In situ reduction strategy towards high conductivity, anti-freezing and super-stretchable rGO based hydrogel for diverse flexible electronics. Nano Research, 2024, 17(5): 4016-4022. https://doi.org/10.1007/s12274-023-6267-9
Topics:

490

Views

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 23 August 2023
Revised: 12 October 2023
Accepted: 15 October 2023
Published: 11 November 2023
© Tsinghua University Press 2023
Return