AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Identification of LRG1 targeting peptide and its application in targeted imaging for breast cancer

Mengdie Chen1,2,§Anying Zhu1,3,§Furong Zhu1Ziwen Lei1Tao Huang4Shengnan Du1Dongdong Wang5Xiaoyu Zhang5( )Huan Min1,2( )Yingqiu Qi1,2( )Guangjun Nie6
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450008, China
Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Department of Breast Disease, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450003, China
CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China

§ Mengdie Chen and Anying Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

A peptide targeting Leucine-rich-alpha-2-glycoprotein 1 (LRG1) was identified using phage display technology for imaging in primary and metastatic breast tumors.

Abstract

Breast cancer remains a leading cause of morbidity and mortality among women worldwide, emphasizing the urgent need for enhanced diagnostic and therapeutic approaches. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) has emerged as a notable target due to its markedly elevated expression in breast tumors, suggesting the viability of LRG1 as a theranostic target. In our study, we employed phage display technology to identify a peptide, termed ET, that binds to LRG1 with a dissociation constant of 48.4 μM. After modified with fluorescent cyanine dye, the ET peptide showcased effective tumor-targeting imaging across three different primary breast tumor models and a metastatic breast tumor model. We also undertook a comprehensive safety evaluation, which verified the good biosafety credentials of ET peptide. In summary, the ET peptide identified in this study shows effective LRG1-targeting ability both in vitro and in vivo, thus exhibiting immense potential for clinical translation.

Electronic Supplementary Material

Download File(s)
6268_ESM.pdf (3.3 MB)

References

[1]

Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48.

[2]

Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M. H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535.

[3]

Waks, A. G.; Winer, E. P. Breast cancer treatment. JAMA 2019, 321, 288–300.

[4]

Barnestein, R.; Galland, L.; Kalfeist, L.; Ghiringhelli, F.; Ladoire, S.; Limagne, E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology. 2022, 11, 2120676.

[5]

Blakely, B.; Shin, S.; Jin, K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem. Pharmacol. 2023, 212, 115552.

[6]

Hong, R. X.; Xu, B. H. Breast cancer: An up-to-date review and future perspectives. Cancer Commun. (Lond.) 2022, 42, 913–936.

[7]

Jacobs, A. T.; Castaneda-Cruz, M. D.; Rose, M. M.; Connelly, L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022, 204, 115209.

[8]

Goel, S.; Bergholz, J. S.; Zhao, J. J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 2022, 22, 356–372.

[9]
Roskoski, R. Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res. 2022 , 175, 106037.
[10]

Tsao, L. C.; Force, J.; Hartman, Z. C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 2021, 81, 4641–4651.

[11]

Trail, P. A.; Dubowchik, G. M.; Lowinger, T. B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018, 181, 126–142.

[12]

Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325.

[13]

Yin, L.; Duan, J. J.; Bian, X. W.; Yu, S. C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61.

[14]

Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor heterogeneity: The Rosetta stone of therapy resistance. Cancer Cell 2020, 37, 471–484.

[15]

Labrie, M.; Brugge, J. S.; Mills, G. B.; Zervantonakis, I. K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer. 2022, 22, 323–339.

[16]

Haupt, H.; Baudner, S. Solation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author's transl). Hoppe Seylers. Z. Physiol. Chem. 1977, 358, 639–646.

[17]

Camilli, C.; Hoeh, A. E.; De Rossi, G.; Moss, S. E.; Greenwood, J. LRG1: An emerging player in disease pathogenesis. J. Biomed. Sci. 2022, 29, 6.

[18]

Gao, Y.; Xie, Z. B.; Ho, C.; Wang, J.; Li, Q. F.; Zhang, Y. F.; Zhou, J. LRG1 promotes keratinocyte migration and wound repair through regulation of HIF-1α stability. J. Invest. Dermatol. 2020, 140, 455–464.

[19]
Wang, X. M.; Abraham, S.; McKenzie, J. A. G.; Jeffs, N.; Swire, M.; Tripathi, V. B.; Luhmann, U. F. O.; Lange, C. A. K.; Zhai, Z. H.; Arthur, H. M. et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature 2013 , 499, 306–311.
[20]

Zhang, Q.; Huang, R.; Tang, Q. C.; Yu, Y.; Huang, Q. L.; Chen, Y. G.; Wang, G. Y.; Wang, X. S. Leucine-rich alpha-2-glycoprotein-1 is up-regulated in colorectal cancer and is a tumor promoter. OncoTargets Ther. 2018, 11, 2745–2752.

[21]

Li, Z. F.; Zeng, C.; Nong, Q. H.; Long, F. H.; Liu, J. X.; Mu, Z. M.; Chen, B. K.; Wu, D.; Wu, H. Exosomal leucine-Rich-Alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β Signal pathway. Mol. Ther. Oncolyt. 2019, 14, 313–322.

[22]

Xie, Z. B.; Zhang, Y. F.; Jin, C.; Mao, Y. S.; Fu, D. L. LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling. J. Exp. Clin. Cancer Res. 2019, 38, 75.

[23]

Singhal, M.; Gengenbacher, N.; Pari, A. A. A.; Kamiyama, M.; Hai, L.; Kuhn, B. J.; Kallenberg, D. M.; Kulkarni, S. R.; Camilli, C.; Preuß, S. F. et al. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Sci. Transl. Med. 2021, 13, eabe6805.

[24]
O'Connor, M. N.; Kallenberg, D. M.; Camilli, C.; Pilotti, C.; Dritsoula, A.; Jackstadt, R.; Bowers, C. E.; Watson, H. A.; Alatsatianos, M.; Ohme, J. et al. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Med. 2021 , 2, 1231–1252.e10.
[25]

Jemmerson, R.; Staskus, K.; Higgins, L.; Conklin, K.; Kelekar, A. Intracellular leucine-rich alpha-2-glycoprotein-1 competes with Apaf-1 for binding cytochrome c in protecting MCF-7 breast cancer cells from apoptosis. Apoptosis 2021, 26, 71–82.

[26]

Zhang, Y. S.; Han, L.; Yang, C.; Liu, Y. J.; Zhang, X. M. Prognostic value of LRG1 in breast cancer: A retrospective study. Oncol. Res. Treat. 2021, 44, 36–42.

[27]

Gutiérrez-Fernández, J.; Javaid, F.; De Rossi, G.; Chudasama, V.; Greenwood, J.; Moss, S. E.; Luecke, H. Structural basis of human LRG1 recognition by Magacizumab, a humanized monoclonal antibody with therapeutic potential. Acta Crystallogr. D Struct. Biol. 2022, 78, 725–734.

[28]

Zhang, X. C.; Zhang, X. Y.; Gao, H. L.; Qing, G. Phage display derived peptides for Alzheimer's disease therapy and diagnosis. Theranostics. 2022, 12, 2041–2062.

[29]

Saw, P. E.; Song, E. W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019, 10, 787–807.

[30]

Todaro, B.; Ottalagana, E.; Luin, S.; Santi, M. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics 2023, 15, 1648–1672.

Nano Research
Pages 9044-9051
Cite this article:
Chen M, Zhu A, Zhu F, et al. Identification of LRG1 targeting peptide and its application in targeted imaging for breast cancer. Nano Research, 2024, 17(10): 9044-9051. https://doi.org/10.1007/s12274-023-6268-8
Topics:
Part of a topical collection:

926

Views

2

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 August 2023
Revised: 13 October 2023
Accepted: 13 October 2023
Published: 17 November 2023
© Tsinghua University Press 2023
Return