AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries

Wenbo WuJiaye ZhuYun Tong( )Shuangfei Xiang( )Pengzuo Chen( )
School of Chemistry and Chemical Engineering, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
Show Author Information

Graphical Abstract

A bimetallic Bi9Cu1 alloying nanosheet is developed by a facile electrochemical co-deposition strategy, which represents an excellent self-supporting electrode for the CO2 reduction reaction (CO2RR). In-depth understanding of catalytic mechanism confirms the optimized electronic structure and surface property of Bi9Cu1 nanosheet for high catalytic performance.

Abstract

Regulating the electronic structure of Bi-based materials by alloying engineering is promising to promote the electrocatalytic activity, but it remains some challenges to be solved. In this study, a facile electrochemical co-deposition strategy is developed to synthesize the bimetallic Bi9Cu1 alloy nanosheet on carbon cloth (Bi9Cu1/CC), which represents a novel self-supporting electrode for the electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR). The Bi9Cu1/CC catalyst has achieved a remarkable catalytic performance with high Faradaic efficiencies (FE) of over 90% for formate at wide potentials from −0.7 to −1.2 V vs. reversible hydrogen electrode (RHE). Moreover, the reversible Zn-CO2 battery can be driven by Bi9Cu1/CC cathode with a largest power density of 1.4 mW·cm−2, and superior operating stability. The systematic characterizations and electrochemical results confirm that the improved catalytic active sites, the enhanced mass/charge transport and the optimal reaction kinetics of Bi nanosheet are realized for CO2RR by Cu alloying. In situ attenuated total reflection infrared (ATR-IR) result confirms the bimetallic Bi-Cu active sites prefer to follow the *OCHO conversion pathway. The density functional theory (DFT) calculations suggest that the Cu alloying contributes to the increased density of states near the Fermi surface of Bi and the optimized adsorption of *OCHO intermediates on the Bi sites, resulting in the excellent catalytic performance.

Electronic Supplementary Material

Download File(s)
12274_2023_6269_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Zhong, H. X.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J. C.; Ge, J.; Wang, M. C.; Liao, Z. Q.; Makarov, D.; Zschech, E.; Brunner, E. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.

[2]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[3]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[4]

Li, L. G.; Huang, Y.; Li, Y. G. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2020, 2, 100024.

[5]

Han, N.; Sun, M. Z.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B. L.; Li, Y. G. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv. Mater. 2021, 33, 2005821.

[6]

Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

[7]

Ye, R. Z.; Zhu, J. Y.; Tong, Y.; Feng, D. M.; Chen, P. Z. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate. J. Energy Chem. 2023, 83, 180–188.

[8]

Ye, R. Z.; Tong, Y.; Feng, D. M.; Chen, P. Z. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate. J. Mater. Chem. A 2023, 11, 4691–4702.

[9]

Ding, P.; Zhao, H. T.; Li, T. S.; Luo, Y. S.; Fan, G. Y.; Chen, G.; Gao, S. Y.; Shi, X. F.; Lu, S. Y.; Sun, X. P. Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J. Mater. Chem. A 2020, 8, 21947–21960.

[10]

Peng, C.; Yang, S. T.; Luo, G.; Yan, S.; Chen, N.; Zhang, J. B.; Chen, Y. S.; Wang, X. C.; Wang, Z. Q.; Wei, W. et al. Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth (110) facets modified with sulfur-anchored sodium cations. Chem 2023, 9, 2830–2840.

[11]

Blom, M. J. W.; van Swaaij, W. P. M.; Mul, G.; Kersten, S. R. A. Mechanism and micro kinetic model for electroreduction of CO2 on Pd/C: The role of different palladium hydride phases. ACS Catal. 2021, 11, 6883–6891.

[12]

Luo, Y. Q.; Zhang, K. F.; Li, Y. G.; Wang, Y. H. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 3, 1313–1332.

[13]

Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

[14]

Zhang, X. L.; Guo, S. X.; Gandionco, K. A.; Bond, A. M.; Zhang, J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design. Mater. Today Adv. 2020, 7, 100074.

[15]

Mu, Z. Y.; Han, N.; Xu, D.; Tian, B. L.; Wang, F. Y.; Wang, Y. Q.; Sun, Y. M.; Liu, C.; Zhang, P. K.; Wu, X. J. et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat. Commun. 2022, 13, 6911.

[16]

Li, H. Q.; Xiao, N.; Wang, Y. W.; Liu, C.; Zhang, S. J.; Zhang, H. H.; Bai, J. P.; Xiao, J.; Li, C.; Guo, Z. et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnO x /carbon foam monolithic electrode. J. Mater. Chem. A 2020, 8, 1779–1786.

[17]

Li, L.; Ozden, A.; Guo, S. Y.; Garcı́a de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[18]

Yu, W. T.; Wen, L. S.; Gao, J.; Chen, S. Z.; He, Z. Q.; Wang, D.; Shen, Y.; Song, S. Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO2 electroreduction to formate. Chem. Commun. 2021, 57, 7418–7421.

[19]

Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

[20]

Xu, D. F.; Xu, Y.; Wang, H. X.; Qiu, X. Q. Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO2 to formate. Chem. Commun. 2022, 58, 3007–3010.

[21]

Sun, Y. D.; Wang, F. F.; Liu, F.; Zhang, S. K.; Zhao, S. L.; Chen, J.; Huang, Y.; Liu, X. J.; Wu, Y. P.; Chen, Y. H. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu. ACS Appl. Mater. Interfaces 2022, 14, 8896–8905.

[22]

Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. H.; Dai, S.; Zhu, H. Y. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 2016, 6, 6255–6264.

[23]

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

[24]

Wei, H. L.; Tan, A. D.; Xiang, Z. P.; Zhang, J.; Piao, J. H.; Liang, Z. X.; Wan, K.; Fu, Z. Y. Modulating p-orbital of bismuth nanosheet by nickel doping for electrocatalytic carbon dioxide reduction reaction. ChemSusChem 2022, 15, e202200752.

[25]

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

[26]

Pang, R. C.; Tian, P. F.; Jiang, H. L.; Zhu, M. H.; Su, X. Z.; Wang, Y.; Yang, X. L.; Zhu, Y. H.; Song, L.; Li, C. Z. Tracking structural evolution: Operando regenerative CeO x /Bi interface structure for high-performance CO2 electroreduction. Natl. Sci. Rev. 2021, 8, nwaa187.

[27]

Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135.

[28]

Ma, X.; Tian, J. J.; Wang, M.; Shen, M.; Zhang, L. X. Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO2 reduction electrocatalyst in a wide potential range. J. Colloid Interface Sci. 2022, 608, 1676–1684.

[29]

Jiang, Y. F.; Zhang, X. D.; Xu, D. F.; Li, W. Z.; Liu, M.; Qiu, X. Q. Efficient three-phase electrocatalytic CO2 reduction to formate on superhydrophobic Bi–C interfaces. Chem. Commun. 2021, 57, 6011–6014.

[30]

Wang, M.; Liu, S.; Chen, B.; Huang, M. J.; Peng, C. Co-regulation of intermediate binding and water activation in sulfur-doped bismuth nanosheets for electrocatalytic CO2 reduction to formate. Chem. Eng. J. 2023, 451, 139056.

[31]

Zhang, G. X.; Zheng, X. L.; Cui, X. M.; Wang, J.; Liu, J. H.; Chen, J. F.; Xu, Q. Doping of vanadium into bismuth oxide nanoparticles for electrocatalytic CO2 reduction. ACS Appl. Nano Mater. 2022, 5, 15465–15472.

[32]

Zhao, Y.; Liu, X. L.; Liu, Z. X.; Lin, X.; Lan, J.; Zhang, Y. L.; Lu, Y. R.; Peng, M.; Chan, T. S.; Tan, Y. W. Spontaneously Sn-doped Bi/BiO x core–shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 2021, 21, 6907–6913.

[33]

Cui, R. X.; Yuan, Q.; Zhang, C.; Yang, X.; Ji, Z. R.; Shi, Z. L.; Han, X. Q.; Wang, Y. Y.; Jiao, J. Q.; Lu, T. B. Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS Catal. 2022, 12, 11294–11300.

[34]

Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.

[35]

Mun, Y.; Lee, S.; Cho, A.; Kim, S.; Han, J. W.; Lee, J. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Appl. Catal. B: Environ. 2019, 246, 82–88.

[36]

Xie, Q. X.; Larrazábal, G. O.; Ma, M.; Chorkendorff, I.; Seger, B.; Luo, J. S. Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. J. Energy Chem. 2021, 63, 278–284.

[37]

Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2021, 60, 26233–26237.

[38]

Jia, L.; Yang, H.; Deng, J.; Chen, J. M.; Zhou, Y.; Ding, P.; Li, L. G.; Han, N.; Li, Y. G. Copper-bismuth bimetallic microspheres for selective electrocatalytic reduction of CO2 to formate. Chin. J. Chem. 2019, 37, 497–500.

[39]

Xiong, Y. S.; Wei, B.; Wu, M.; Hu, B. C.; Zhu, F. F.; Hao, J. H.; Shi, W. D. Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window. J. CO2 Util. 2021, 51, 101621.

[40]

Wang, Y. T.; Cheng, L.; Zhu, Y. H.; Liu, J. Z.; Xiao, C. Q.; Chen, R. Z.; Zhang, L.; Li, Y. H.; Li, C. Z. Tunable selectivity on copper-bismuth bimetallic aerogels for electrochemical CO2 reduction. Appl. Catal. B: Environ. 2022, 317, 121650.

[41]

Shen, H. D.; Zhao, Y. K.; Zhang, L.; He, Y.; Yang, S. W.; Wang, T. S.; Cao, Y. L.; Guo, Y.; Zhang, Q. Y.; Zhang, H. P. In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO2 electrolysis to formate in ampere-level. Adv. Energy Mater. 2023, 13, 2202818

[42]

Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

[43]

Li, K. X.; Zhou, G. R.; Tong, Y.; Ye, Y. T.; Chen, P. Z. Interface engineering of a hierarchical p-modified Co/Ni3P heterostructure for highly efficient water electrolysis coupled with hydrazine degradation. ACS Sustain. Chem. Eng. 2023, 11, 14186–14196.

[44]
Li, K. X.; Tong, Y.; He, J. F.; Liu, X. Y.; Chen, P. Z. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. Mater. Horiz., in press, DOI: 10.1039/D3MH00872J.
[45]
Li, K. X.; He, J. F.; Guan, X. Z.; Tong, Y.; Ye, Y. T.; Chen, L.; Chen, P. Z. Phosphorus-modified amorphous high-entropy CoFeNiCrMn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small, in press, DOI: 10.1002/smll.202302130.
[46]

Liu, P.; Liu, H. L.; Zhang, S.; Wang, J.; Wang, C. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2·− adsorption and electron transfer. J. Colloid Interface Sci. 2021, 602, 740–747.

[47]

Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.

[48]

Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188–197.

[49]

Zu, M. Y.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Yang, H. G. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J. Mater. Chem. A 2018, 6, 16804–16809.

[50]

Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

[51]

He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, 2105246.

[52]

Shen, H. F.; Jin, H. Y.; Li, H. B.; Wang, H. R.; Duan, J. J.; Jiao, Y.; Qiao, S. Z. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 2023, 14, 2843.

[53]

Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

[54]

Yao, K. L.; Wang, H. B.; Yang, X. T.; Huang, Y.; Kou, C. D.; Jing, T.; Chen, S. H.; Wang, Z. Y.; Liu, Y. C.; Liang, H. Y. Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B: Environ. 2022, 311, 121377.

[55]

Wang, X. S.; Wang, W. H.; Zhang, J. Q.; Wang, H. Z.; Yang, Z. X.; Ning, H.; Zhu, J. X.; Zhang, Y. L.; Guan, L.; Teng, X. L. et al. Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction. Chem. Eng. J. 2021, 426, 131867.

Nano Research
Pages 3684-3692
Cite this article:
Wu W, Zhu J, Tong Y, et al. Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Research, 2024, 17(5): 3684-3692. https://doi.org/10.1007/s12274-023-6269-7
Topics:

886

Views

17

Crossref

1

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 29 August 2023
Revised: 04 October 2023
Accepted: 14 October 2023
Published: 24 November 2023
© Tsinghua University Press 2023
Return